Dongxiao Yue, Elvis Wang Hei Ng and Hajime Hirao*,
{"title":"氢键辅助催化:人 CYP2C8 对紫杉醇的羟化反应","authors":"Dongxiao Yue, Elvis Wang Hei Ng and Hajime Hirao*, ","doi":"10.1021/jacs.4c0793710.1021/jacs.4c07937","DOIUrl":null,"url":null,"abstract":"<p >Paclitaxel (PTX, or Taxol), a chemotherapeutic agent widely employed in the treatment of various cancers, undergoes metabolic transformations through the cytochrome P450 enzymes CYP3A4 and CYP2C8. CYP3A4 catalyzes the aromatic hydroxylation reaction of PTX, whereas CYP2C8 demonstrates a distinct reactivity pattern, producing 6α-hydroxypaclitaxel via alkane hydroxylation. Despite the significant impact of PTX metabolism on its anticancer efficacy, the detailed mechanisms underlying these transformations have remained largely unclear. In this study, we employed hybrid quantum mechanics and molecular mechanics (QM/MM) calculations to elucidate the mechanism of PTX metabolism by human CYP2C8. Our QM/MM results reveal that the hydroxylation of PTX by CYP2C8 follows an atypical rebound mechanism. Either of the two hydrogen atoms at the C6 position of PTX can be abstracted, leading to a common radical intermediate. Although the subsequent rebound barrier is unusually high, stereochemical scrambling is unlikely, as the rebound barrier for the formation of the 6α-hydroxylated PTX─the actual product─is significantly lower than that for the 6β-hydroxylated metabolite. Thus, product selectivity is determined by the non-rate-determining rebound step. Furthermore, the hydroxyl group at the C7 position of PTX plays a catalytic role by facilitating the hydrogen abstraction and rebound steps. Our study also confirms a pronounced stability of the transition state in the high-spin sextet spin state, enabled by the enzyme’s specific substrate positioning.</p>","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":"146 44","pages":"30117–30125 30117–30125"},"PeriodicalIF":15.6000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/jacs.4c07937","citationCount":"0","resultStr":"{\"title\":\"Hydrogen-Bond-Assisted Catalysis: Hydroxylation of Paclitaxel by Human CYP2C8\",\"authors\":\"Dongxiao Yue, Elvis Wang Hei Ng and Hajime Hirao*, \",\"doi\":\"10.1021/jacs.4c0793710.1021/jacs.4c07937\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Paclitaxel (PTX, or Taxol), a chemotherapeutic agent widely employed in the treatment of various cancers, undergoes metabolic transformations through the cytochrome P450 enzymes CYP3A4 and CYP2C8. CYP3A4 catalyzes the aromatic hydroxylation reaction of PTX, whereas CYP2C8 demonstrates a distinct reactivity pattern, producing 6α-hydroxypaclitaxel via alkane hydroxylation. Despite the significant impact of PTX metabolism on its anticancer efficacy, the detailed mechanisms underlying these transformations have remained largely unclear. In this study, we employed hybrid quantum mechanics and molecular mechanics (QM/MM) calculations to elucidate the mechanism of PTX metabolism by human CYP2C8. Our QM/MM results reveal that the hydroxylation of PTX by CYP2C8 follows an atypical rebound mechanism. Either of the two hydrogen atoms at the C6 position of PTX can be abstracted, leading to a common radical intermediate. Although the subsequent rebound barrier is unusually high, stereochemical scrambling is unlikely, as the rebound barrier for the formation of the 6α-hydroxylated PTX─the actual product─is significantly lower than that for the 6β-hydroxylated metabolite. Thus, product selectivity is determined by the non-rate-determining rebound step. Furthermore, the hydroxyl group at the C7 position of PTX plays a catalytic role by facilitating the hydrogen abstraction and rebound steps. Our study also confirms a pronounced stability of the transition state in the high-spin sextet spin state, enabled by the enzyme’s specific substrate positioning.</p>\",\"PeriodicalId\":49,\"journal\":{\"name\":\"Journal of the American Chemical Society\",\"volume\":\"146 44\",\"pages\":\"30117–30125 30117–30125\"},\"PeriodicalIF\":15.6000,\"publicationDate\":\"2024-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/jacs.4c07937\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the American Chemical Society\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/jacs.4c07937\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/jacs.4c07937","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Hydrogen-Bond-Assisted Catalysis: Hydroxylation of Paclitaxel by Human CYP2C8
Paclitaxel (PTX, or Taxol), a chemotherapeutic agent widely employed in the treatment of various cancers, undergoes metabolic transformations through the cytochrome P450 enzymes CYP3A4 and CYP2C8. CYP3A4 catalyzes the aromatic hydroxylation reaction of PTX, whereas CYP2C8 demonstrates a distinct reactivity pattern, producing 6α-hydroxypaclitaxel via alkane hydroxylation. Despite the significant impact of PTX metabolism on its anticancer efficacy, the detailed mechanisms underlying these transformations have remained largely unclear. In this study, we employed hybrid quantum mechanics and molecular mechanics (QM/MM) calculations to elucidate the mechanism of PTX metabolism by human CYP2C8. Our QM/MM results reveal that the hydroxylation of PTX by CYP2C8 follows an atypical rebound mechanism. Either of the two hydrogen atoms at the C6 position of PTX can be abstracted, leading to a common radical intermediate. Although the subsequent rebound barrier is unusually high, stereochemical scrambling is unlikely, as the rebound barrier for the formation of the 6α-hydroxylated PTX─the actual product─is significantly lower than that for the 6β-hydroxylated metabolite. Thus, product selectivity is determined by the non-rate-determining rebound step. Furthermore, the hydroxyl group at the C7 position of PTX plays a catalytic role by facilitating the hydrogen abstraction and rebound steps. Our study also confirms a pronounced stability of the transition state in the high-spin sextet spin state, enabled by the enzyme’s specific substrate positioning.
期刊介绍:
The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.