Cristin E. Juda, Claire E. Casaday, Justin J. Teesdale, Amymarie K. Bartholomew, Benjamin Lin, Kurtis M. Carsch, Rebecca A. Musgrave, Shao-Liang Zheng, Xiaoping Wang, Christina M. Hoffmann, SuYin Wang, Yu Sheng Chen and Theodore A. Betley*,
{"title":"通过反常 X 射线和中子衍射确定杂金属三核团簇的成分","authors":"Cristin E. Juda, Claire E. Casaday, Justin J. Teesdale, Amymarie K. Bartholomew, Benjamin Lin, Kurtis M. Carsch, Rebecca A. Musgrave, Shao-Liang Zheng, Xiaoping Wang, Christina M. Hoffmann, SuYin Wang, Yu Sheng Chen and Theodore A. Betley*, ","doi":"10.1021/jacs.4c1022610.1021/jacs.4c10226","DOIUrl":null,"url":null,"abstract":"<p >Anomalous X-ray diffraction (AXD) and neutron diffraction can be used to crystallographically distinguish between metals of similar electron density. Despite the use of AXD for structural characterization in mixed metal clusters, there are no benchmark studies evaluating the accuracy of AXD toward assessing elemental occupancy in molecules with comparisons with what is determined via neutron diffraction. We collected resonant diffraction data on several homo and heterometallic clusters and refined their anomalous scattering components to determine metal site occupancies. Theoretical resonant scattering terms for Fe<sup>0</sup>, Co<sup>0</sup>, and Zn<sup>0</sup> were compared against experimental values, revealing theoretical values are ill-suited to serve as references for occupancy determination. The cluster featuring distinct cation and anion metal compositions [CoCp<sub>2</sub>*][(<sup>tbs</sup>L)Fe<sub>3</sub>(μ<sup>3</sup>–NAr)] was used to assess the accuracy of different <i>f</i>′ references for occupancy determination (<i>f</i>′<sub>theoretical</sub> ± 15–17%; <i>f</i>′<sub>experimental</sub> ± 10%). This methodology was applied toward calculating the occupancy of three different clusters: (<sup>tbs</sup>L)Fe<sub>2</sub>Zn(py) (<b>6</b>), (<sup>tbs</sup>L)Fe<sub>2</sub>Zn(μ<sup>3</sup>–NAr)(py) (<b>7</b>), and [CoCp*<sub>2</sub>][(<sup>tbs</sup>L)Fe<sub>2</sub>Zn(μ<sup>3</sup>–NAr)] (<b>8</b>). The first two clusters maintain 100% Fe/Zn site isolation, whereas <b>8</b> showed metal mixing within the sites. The large crystal size of <b>8</b> enabled collection of neutron diffraction data which was compared against the results found with AXD. The ability of AXD to replicate the metal occupancies as determined by neutron diffraction supports the AXD occupancy methodology developed herein. Furthermore, the advantages innate to AXD (e.g., smaller crystal sizes, shorter collection times, and greater availability of synchrotron resources) versus neutron diffraction further support the need for its development as a standard technique.</p>","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":"146 44","pages":"30320–30331 30320–30331"},"PeriodicalIF":14.4000,"publicationDate":"2024-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Composition Determination of Heterometallic Trinuclear Clusters via Anomalous X-ray and Neutron Diffraction\",\"authors\":\"Cristin E. Juda, Claire E. Casaday, Justin J. Teesdale, Amymarie K. Bartholomew, Benjamin Lin, Kurtis M. Carsch, Rebecca A. Musgrave, Shao-Liang Zheng, Xiaoping Wang, Christina M. Hoffmann, SuYin Wang, Yu Sheng Chen and Theodore A. Betley*, \",\"doi\":\"10.1021/jacs.4c1022610.1021/jacs.4c10226\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Anomalous X-ray diffraction (AXD) and neutron diffraction can be used to crystallographically distinguish between metals of similar electron density. Despite the use of AXD for structural characterization in mixed metal clusters, there are no benchmark studies evaluating the accuracy of AXD toward assessing elemental occupancy in molecules with comparisons with what is determined via neutron diffraction. We collected resonant diffraction data on several homo and heterometallic clusters and refined their anomalous scattering components to determine metal site occupancies. Theoretical resonant scattering terms for Fe<sup>0</sup>, Co<sup>0</sup>, and Zn<sup>0</sup> were compared against experimental values, revealing theoretical values are ill-suited to serve as references for occupancy determination. The cluster featuring distinct cation and anion metal compositions [CoCp<sub>2</sub>*][(<sup>tbs</sup>L)Fe<sub>3</sub>(μ<sup>3</sup>–NAr)] was used to assess the accuracy of different <i>f</i>′ references for occupancy determination (<i>f</i>′<sub>theoretical</sub> ± 15–17%; <i>f</i>′<sub>experimental</sub> ± 10%). This methodology was applied toward calculating the occupancy of three different clusters: (<sup>tbs</sup>L)Fe<sub>2</sub>Zn(py) (<b>6</b>), (<sup>tbs</sup>L)Fe<sub>2</sub>Zn(μ<sup>3</sup>–NAr)(py) (<b>7</b>), and [CoCp*<sub>2</sub>][(<sup>tbs</sup>L)Fe<sub>2</sub>Zn(μ<sup>3</sup>–NAr)] (<b>8</b>). The first two clusters maintain 100% Fe/Zn site isolation, whereas <b>8</b> showed metal mixing within the sites. The large crystal size of <b>8</b> enabled collection of neutron diffraction data which was compared against the results found with AXD. The ability of AXD to replicate the metal occupancies as determined by neutron diffraction supports the AXD occupancy methodology developed herein. Furthermore, the advantages innate to AXD (e.g., smaller crystal sizes, shorter collection times, and greater availability of synchrotron resources) versus neutron diffraction further support the need for its development as a standard technique.</p>\",\"PeriodicalId\":49,\"journal\":{\"name\":\"Journal of the American Chemical Society\",\"volume\":\"146 44\",\"pages\":\"30320–30331 30320–30331\"},\"PeriodicalIF\":14.4000,\"publicationDate\":\"2024-10-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the American Chemical Society\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/jacs.4c10226\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/jacs.4c10226","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Composition Determination of Heterometallic Trinuclear Clusters via Anomalous X-ray and Neutron Diffraction
Anomalous X-ray diffraction (AXD) and neutron diffraction can be used to crystallographically distinguish between metals of similar electron density. Despite the use of AXD for structural characterization in mixed metal clusters, there are no benchmark studies evaluating the accuracy of AXD toward assessing elemental occupancy in molecules with comparisons with what is determined via neutron diffraction. We collected resonant diffraction data on several homo and heterometallic clusters and refined their anomalous scattering components to determine metal site occupancies. Theoretical resonant scattering terms for Fe0, Co0, and Zn0 were compared against experimental values, revealing theoretical values are ill-suited to serve as references for occupancy determination. The cluster featuring distinct cation and anion metal compositions [CoCp2*][(tbsL)Fe3(μ3–NAr)] was used to assess the accuracy of different f′ references for occupancy determination (f′theoretical ± 15–17%; f′experimental ± 10%). This methodology was applied toward calculating the occupancy of three different clusters: (tbsL)Fe2Zn(py) (6), (tbsL)Fe2Zn(μ3–NAr)(py) (7), and [CoCp*2][(tbsL)Fe2Zn(μ3–NAr)] (8). The first two clusters maintain 100% Fe/Zn site isolation, whereas 8 showed metal mixing within the sites. The large crystal size of 8 enabled collection of neutron diffraction data which was compared against the results found with AXD. The ability of AXD to replicate the metal occupancies as determined by neutron diffraction supports the AXD occupancy methodology developed herein. Furthermore, the advantages innate to AXD (e.g., smaller crystal sizes, shorter collection times, and greater availability of synchrotron resources) versus neutron diffraction further support the need for its development as a standard technique.
期刊介绍:
The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.