亚价双拉特勒对 Bi13S18Br2 Chalcohalide 高 n 型热电性能的影响

IF 14.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Anustoop Das, Koyendrila Debnath, Ivy Maria, Subarna Das, Prabir Dutta, Diptikanta Swain, Umesh V. Waghmare and Kanishka Biswas*, 
{"title":"亚价双拉特勒对 Bi13S18Br2 Chalcohalide 高 n 型热电性能的影响","authors":"Anustoop Das,&nbsp;Koyendrila Debnath,&nbsp;Ivy Maria,&nbsp;Subarna Das,&nbsp;Prabir Dutta,&nbsp;Diptikanta Swain,&nbsp;Umesh V. Waghmare and Kanishka Biswas*,&nbsp;","doi":"10.1021/jacs.4c1173810.1021/jacs.4c11738","DOIUrl":null,"url":null,"abstract":"<p >Metal chalcohalides, owing to their higher stability over halides and greater tunability of electronic features over chalcogenides, open new avenues for investigating properties of materials. Complex metal chalcohalides can be a good choice for thermoelectric studies for their halide-like low thermal conductivity and chalcogenide-like high electrical conductivity. Here, we have investigated the thermoelectric properties of <i>n</i>-type Bi<sub>13</sub>S<sub>18</sub>Br<sub>2</sub> and utilized the concept of Fajans’ polarization to describe the formation of a dimer <i></i><math><msubsup><mrow><mi>Bi</mi></mrow><mrow><mn>2</mn></mrow><mrow><mrow><mn>4</mn></mrow><mrow><mo>+</mo></mrow></mrow></msubsup></math> and explained how it can help achieve high thermoelectric figure of merit (zT) of ∼1.0 at 748 K. This zT value is so far the highest-reported value for pristine metal chalcohalides. The existence of <i></i><math><msubsup><mrow><mi>Bi</mi></mrow><mrow><mn>2</mn></mrow><mrow><mrow><mn>4</mn></mrow><mrow><mo>+</mo></mrow></mrow></msubsup></math> subunit in Bi<sub>13</sub>S<sub>18</sub>Br<sub>2</sub> is experimentally verified by synchrotron X-ray pair distribution function (X-PDF) analysis. The complex structure of Bi<sub>13</sub>S<sub>18</sub>Br<sub>2</sub> having a large unit cell exhibits simultaneous dimer-cation rattler (i.e., “twin-rattler”), which decreases the lattice thermal conductivity drastically. We observed evidence of such low-energy rattling vibrations from DFT-calculated eigen mode visualizations of the phonon dispersion. The subvalent nature of <i></i><math><msubsup><mrow><mi>Bi</mi></mrow><mrow><mn>2</mn></mrow><mrow><mrow><mn>4</mn></mrow><mrow><mo>+</mo></mrow></mrow></msubsup></math>accommodates an extra electron in <i>Bi</i>(<i>6p</i><sub><i>z</i></sub>) orbital, which helps form a weakly dispersed donor band just below the Fermi energy (<i>E</i><sub>F</sub>), leading to a significant reduction in band gap (0.77 eV), which is favorable for high thermoelectric performance. Consequently, we obtained a semiconducting nature of <i>n</i>-type Bi<sub>13</sub>S<sub>18</sub>Br<sub>2</sub> with moderate electrical conductivity, as well as a high Seebeck coefficient. Our investigation presents the importance of fundamental chemistry in thermoelectrics and demonstrates the influence of subvalent twin-rattler in triggering high thermoelectric performance in metal chalcohalides.</p>","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":"146 44","pages":"30518–30528 30518–30528"},"PeriodicalIF":14.4000,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Influence of Subvalent Twin-Rattler for High n-Type Thermoelectric Performance in Bi13S18Br2 Chalcohalide\",\"authors\":\"Anustoop Das,&nbsp;Koyendrila Debnath,&nbsp;Ivy Maria,&nbsp;Subarna Das,&nbsp;Prabir Dutta,&nbsp;Diptikanta Swain,&nbsp;Umesh V. Waghmare and Kanishka Biswas*,&nbsp;\",\"doi\":\"10.1021/jacs.4c1173810.1021/jacs.4c11738\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Metal chalcohalides, owing to their higher stability over halides and greater tunability of electronic features over chalcogenides, open new avenues for investigating properties of materials. Complex metal chalcohalides can be a good choice for thermoelectric studies for their halide-like low thermal conductivity and chalcogenide-like high electrical conductivity. Here, we have investigated the thermoelectric properties of <i>n</i>-type Bi<sub>13</sub>S<sub>18</sub>Br<sub>2</sub> and utilized the concept of Fajans’ polarization to describe the formation of a dimer <i></i><math><msubsup><mrow><mi>Bi</mi></mrow><mrow><mn>2</mn></mrow><mrow><mrow><mn>4</mn></mrow><mrow><mo>+</mo></mrow></mrow></msubsup></math> and explained how it can help achieve high thermoelectric figure of merit (zT) of ∼1.0 at 748 K. This zT value is so far the highest-reported value for pristine metal chalcohalides. The existence of <i></i><math><msubsup><mrow><mi>Bi</mi></mrow><mrow><mn>2</mn></mrow><mrow><mrow><mn>4</mn></mrow><mrow><mo>+</mo></mrow></mrow></msubsup></math> subunit in Bi<sub>13</sub>S<sub>18</sub>Br<sub>2</sub> is experimentally verified by synchrotron X-ray pair distribution function (X-PDF) analysis. The complex structure of Bi<sub>13</sub>S<sub>18</sub>Br<sub>2</sub> having a large unit cell exhibits simultaneous dimer-cation rattler (i.e., “twin-rattler”), which decreases the lattice thermal conductivity drastically. We observed evidence of such low-energy rattling vibrations from DFT-calculated eigen mode visualizations of the phonon dispersion. The subvalent nature of <i></i><math><msubsup><mrow><mi>Bi</mi></mrow><mrow><mn>2</mn></mrow><mrow><mrow><mn>4</mn></mrow><mrow><mo>+</mo></mrow></mrow></msubsup></math>accommodates an extra electron in <i>Bi</i>(<i>6p</i><sub><i>z</i></sub>) orbital, which helps form a weakly dispersed donor band just below the Fermi energy (<i>E</i><sub>F</sub>), leading to a significant reduction in band gap (0.77 eV), which is favorable for high thermoelectric performance. Consequently, we obtained a semiconducting nature of <i>n</i>-type Bi<sub>13</sub>S<sub>18</sub>Br<sub>2</sub> with moderate electrical conductivity, as well as a high Seebeck coefficient. Our investigation presents the importance of fundamental chemistry in thermoelectrics and demonstrates the influence of subvalent twin-rattler in triggering high thermoelectric performance in metal chalcohalides.</p>\",\"PeriodicalId\":49,\"journal\":{\"name\":\"Journal of the American Chemical Society\",\"volume\":\"146 44\",\"pages\":\"30518–30528 30518–30528\"},\"PeriodicalIF\":14.4000,\"publicationDate\":\"2024-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the American Chemical Society\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/jacs.4c11738\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/jacs.4c11738","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

与卤化物相比,金属卤化物具有更高的稳定性,与卤化镓相比,其电子特性具有更大的可调性,这为研究材料特性开辟了新的途径。复杂的金属卤化物具有类似卤化物的低热导率和类似霰化物的高导电率,因此是热电研究的良好选择。在此,我们研究了 n 型 Bi13S18Br2 的热电性能,并利用 Fajans 极化概念描述了 Bi24+ 二聚体的形成,解释了它如何有助于在 748 K 时获得 ∼1.0 的高热电功率(zT)。通过同步辐射 X 射线对分布函数(X-PDF)分析,实验验证了 Bi13S18Br2 中 Bi24+ 亚基的存在。具有大单元晶胞的 Bi13S18Br2 复合物结构同时表现出二聚体-阳离子响子(即 "双响子"),这大大降低了晶格热导率。我们从 DFT 计算的声子色散特征模式可视化中观察到了这种低能响振的证据。Bi24+ 的亚价性质在 Bi(6pz) 轨道上容纳了一个额外的电子,这有助于在费米能 (EF) 正下方形成一个弱分散的供体带,导致带隙(0.77 eV)显著减小,有利于实现高热电性能。因此,我们获得了具有适度导电性和高塞贝克系数的 n 型 Bi13S18Br2 半导体。我们的研究显示了基础化学在热电中的重要性,并证明了亚价孪晶在引发金属卤化物高热电性能方面的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Influence of Subvalent Twin-Rattler for High n-Type Thermoelectric Performance in Bi13S18Br2 Chalcohalide

Influence of Subvalent Twin-Rattler for High n-Type Thermoelectric Performance in Bi13S18Br2 Chalcohalide

Metal chalcohalides, owing to their higher stability over halides and greater tunability of electronic features over chalcogenides, open new avenues for investigating properties of materials. Complex metal chalcohalides can be a good choice for thermoelectric studies for their halide-like low thermal conductivity and chalcogenide-like high electrical conductivity. Here, we have investigated the thermoelectric properties of n-type Bi13S18Br2 and utilized the concept of Fajans’ polarization to describe the formation of a dimer Bi24+ and explained how it can help achieve high thermoelectric figure of merit (zT) of ∼1.0 at 748 K. This zT value is so far the highest-reported value for pristine metal chalcohalides. The existence of Bi24+ subunit in Bi13S18Br2 is experimentally verified by synchrotron X-ray pair distribution function (X-PDF) analysis. The complex structure of Bi13S18Br2 having a large unit cell exhibits simultaneous dimer-cation rattler (i.e., “twin-rattler”), which decreases the lattice thermal conductivity drastically. We observed evidence of such low-energy rattling vibrations from DFT-calculated eigen mode visualizations of the phonon dispersion. The subvalent nature of Bi24+accommodates an extra electron in Bi(6pz) orbital, which helps form a weakly dispersed donor band just below the Fermi energy (EF), leading to a significant reduction in band gap (0.77 eV), which is favorable for high thermoelectric performance. Consequently, we obtained a semiconducting nature of n-type Bi13S18Br2 with moderate electrical conductivity, as well as a high Seebeck coefficient. Our investigation presents the importance of fundamental chemistry in thermoelectrics and demonstrates the influence of subvalent twin-rattler in triggering high thermoelectric performance in metal chalcohalides.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
24.40
自引率
6.00%
发文量
2398
审稿时长
1.6 months
期刊介绍: The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信