慢性硬膜下血肿复发的影像生物标志物研究。

IF 2.6 4区 医学 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Liyang Wu, Yvmei Zhu, Qiuyong Huang, Shuchao Chen, Haoyang Zhou, Zihao Xu, Bo Li, Hongbo Chen, Junhui Lv
{"title":"慢性硬膜下血肿复发的影像生物标志物研究。","authors":"Liyang Wu, Yvmei Zhu, Qiuyong Huang, Shuchao Chen, Haoyang Zhou, Zihao Xu, Bo Li, Hongbo Chen, Junhui Lv","doi":"10.1007/s11517-024-03232-7","DOIUrl":null,"url":null,"abstract":"<p><p>This study utilizes radiomics to explore imaging biomarkers for predicting the recurrence of chronic subdural hematoma (CSDH), aiming to improve the prediction of CSDH recurrence risk. Analyzing CT scans from 64 patients with CSDH, we extracted 107 radiomic features and employed recursive feature elimination (RFE) and the XGBoost algorithm for feature selection and model construction. The feature selection process identified six key imaging biomarkers closely associated with CSDH recurrence: flatness, surface area to volume ratio, energy, run entropy, small area emphasis, and maximum axial diameter. The selection of these imaging biomarkers was based on their significance in predicting CSDH recurrence, revealing deep connections between postoperative variables and recurrence. After feature selection, there was a significant improvement in model performance. The XGBoost model demonstrated the best classification performance, with the average accuracy improving from 46.82% (before feature selection) to 80.74% and the AUC value increasing from 0.5864 to 0.7998. These results prove that precise feature selection significantly enhances the model's predictive capability. This study not only reveals imaging biomarkers for CSDH recurrence but also provides valuable insights for future personalized treatment strategies.</p>","PeriodicalId":49840,"journal":{"name":"Medical & Biological Engineering & Computing","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research on imaging biomarkers for chronic subdural hematoma recurrence.\",\"authors\":\"Liyang Wu, Yvmei Zhu, Qiuyong Huang, Shuchao Chen, Haoyang Zhou, Zihao Xu, Bo Li, Hongbo Chen, Junhui Lv\",\"doi\":\"10.1007/s11517-024-03232-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study utilizes radiomics to explore imaging biomarkers for predicting the recurrence of chronic subdural hematoma (CSDH), aiming to improve the prediction of CSDH recurrence risk. Analyzing CT scans from 64 patients with CSDH, we extracted 107 radiomic features and employed recursive feature elimination (RFE) and the XGBoost algorithm for feature selection and model construction. The feature selection process identified six key imaging biomarkers closely associated with CSDH recurrence: flatness, surface area to volume ratio, energy, run entropy, small area emphasis, and maximum axial diameter. The selection of these imaging biomarkers was based on their significance in predicting CSDH recurrence, revealing deep connections between postoperative variables and recurrence. After feature selection, there was a significant improvement in model performance. The XGBoost model demonstrated the best classification performance, with the average accuracy improving from 46.82% (before feature selection) to 80.74% and the AUC value increasing from 0.5864 to 0.7998. These results prove that precise feature selection significantly enhances the model's predictive capability. This study not only reveals imaging biomarkers for CSDH recurrence but also provides valuable insights for future personalized treatment strategies.</p>\",\"PeriodicalId\":49840,\"journal\":{\"name\":\"Medical & Biological Engineering & Computing\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Medical & Biological Engineering & Computing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s11517-024-03232-7\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical & Biological Engineering & Computing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11517-024-03232-7","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

本研究利用放射组学探索预测慢性硬膜下血肿(CSDH)复发的影像生物标志物,旨在改善对CSDH复发风险的预测。通过分析64名CSDH患者的CT扫描图像,我们提取了107个影像学特征,并采用递归特征消除(RFE)和XGBoost算法进行特征选择和模型构建。特征选择过程确定了与 CSDH 复发密切相关的六个关键成像生物标志物:平整度、表面积与体积比、能量、运行熵、小面积强调和最大轴向直径。这些成像生物标志物的选择基于它们在预测 CSDH 复发方面的重要性,揭示了术后变量与复发之间的深层联系。经过特征选择后,模型的性能有了显著提高。XGBoost 模型的分类性能最好,平均准确率从特征选择前的 46.82% 提高到 80.74%,AUC 值从 0.5864 提高到 0.7998。这些结果证明,精确的特征选择大大提高了模型的预测能力。这项研究不仅揭示了CSDH复发的影像生物标志物,还为未来的个性化治疗策略提供了有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Research on imaging biomarkers for chronic subdural hematoma recurrence.

This study utilizes radiomics to explore imaging biomarkers for predicting the recurrence of chronic subdural hematoma (CSDH), aiming to improve the prediction of CSDH recurrence risk. Analyzing CT scans from 64 patients with CSDH, we extracted 107 radiomic features and employed recursive feature elimination (RFE) and the XGBoost algorithm for feature selection and model construction. The feature selection process identified six key imaging biomarkers closely associated with CSDH recurrence: flatness, surface area to volume ratio, energy, run entropy, small area emphasis, and maximum axial diameter. The selection of these imaging biomarkers was based on their significance in predicting CSDH recurrence, revealing deep connections between postoperative variables and recurrence. After feature selection, there was a significant improvement in model performance. The XGBoost model demonstrated the best classification performance, with the average accuracy improving from 46.82% (before feature selection) to 80.74% and the AUC value increasing from 0.5864 to 0.7998. These results prove that precise feature selection significantly enhances the model's predictive capability. This study not only reveals imaging biomarkers for CSDH recurrence but also provides valuable insights for future personalized treatment strategies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Medical & Biological Engineering & Computing
Medical & Biological Engineering & Computing 医学-工程:生物医学
CiteScore
6.00
自引率
3.10%
发文量
249
审稿时长
3.5 months
期刊介绍: Founded in 1963, Medical & Biological Engineering & Computing (MBEC) continues to serve the biomedical engineering community, covering the entire spectrum of biomedical and clinical engineering. The journal presents exciting and vital experimental and theoretical developments in biomedical science and technology, and reports on advances in computer-based methodologies in these multidisciplinary subjects. The journal also incorporates new and evolving technologies including cellular engineering and molecular imaging. MBEC publishes original research articles as well as reviews and technical notes. Its Rapid Communications category focuses on material of immediate value to the readership, while the Controversies section provides a forum to exchange views on selected issues, stimulating a vigorous and informed debate in this exciting and high profile field. MBEC is an official journal of the International Federation of Medical and Biological Engineering (IFMBE).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信