利用水库计算从时间序列中无监督提取缓慢时变的系统参数动态,预测未观察到的分岔。

IF 3 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Frontiers in Artificial Intelligence Pub Date : 2024-10-22 eCollection Date: 2024-01-01 DOI:10.3389/frai.2024.1451926
Keita Tokuda, Yuichi Katori
{"title":"利用水库计算从时间序列中无监督提取缓慢时变的系统参数动态,预测未观察到的分岔。","authors":"Keita Tokuda, Yuichi Katori","doi":"10.3389/frai.2024.1451926","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Nonlinear and non-stationary processes are prevalent in various natural and physical phenomena, where system dynamics can change qualitatively due to bifurcation phenomena. Machine learning methods have advanced our ability to learn and predict such systems from observed time series data. However, predicting the behavior of systems with temporal parameter variations without knowledge of true parameter values remains a significant challenge.</p><p><strong>Methods: </strong>This study uses reservoir computing framework to address this problem by unsupervised extraction of slowly varying system parameters from time series data. We propose a model architecture consisting of a slow reservoir with long timescale internal dynamics and a fast reservoir with short timescale dynamics. The slow reservoir extracts the temporal variation of system parameters, which are then used to predict unknown bifurcations in the fast dynamics.</p><p><strong>Results: </strong>Through experiments on chaotic dynamical systems, our proposed model successfully extracted slowly varying system parameters and predicted bifurcations that were not included in the training data. The model demonstrated robust predictive performance, showing that the reservoir computing framework can handle nonlinear, non-stationary systems without prior knowledge of the system's true parameters.</p><p><strong>Discussion: </strong>Our approach shows potential for applications in fields such as neuroscience, material science, and weather prediction, where slow dynamics influencing qualitative changes are often unobservable.</p>","PeriodicalId":33315,"journal":{"name":"Frontiers in Artificial Intelligence","volume":"7 ","pages":"1451926"},"PeriodicalIF":3.0000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11534796/pdf/","citationCount":"0","resultStr":"{\"title\":\"Prediction of unobserved bifurcation by unsupervised extraction of slowly time-varying system parameter dynamics from time series using reservoir computing.\",\"authors\":\"Keita Tokuda, Yuichi Katori\",\"doi\":\"10.3389/frai.2024.1451926\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>Nonlinear and non-stationary processes are prevalent in various natural and physical phenomena, where system dynamics can change qualitatively due to bifurcation phenomena. Machine learning methods have advanced our ability to learn and predict such systems from observed time series data. However, predicting the behavior of systems with temporal parameter variations without knowledge of true parameter values remains a significant challenge.</p><p><strong>Methods: </strong>This study uses reservoir computing framework to address this problem by unsupervised extraction of slowly varying system parameters from time series data. We propose a model architecture consisting of a slow reservoir with long timescale internal dynamics and a fast reservoir with short timescale dynamics. The slow reservoir extracts the temporal variation of system parameters, which are then used to predict unknown bifurcations in the fast dynamics.</p><p><strong>Results: </strong>Through experiments on chaotic dynamical systems, our proposed model successfully extracted slowly varying system parameters and predicted bifurcations that were not included in the training data. The model demonstrated robust predictive performance, showing that the reservoir computing framework can handle nonlinear, non-stationary systems without prior knowledge of the system's true parameters.</p><p><strong>Discussion: </strong>Our approach shows potential for applications in fields such as neuroscience, material science, and weather prediction, where slow dynamics influencing qualitative changes are often unobservable.</p>\",\"PeriodicalId\":33315,\"journal\":{\"name\":\"Frontiers in Artificial Intelligence\",\"volume\":\"7 \",\"pages\":\"1451926\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11534796/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/frai.2024.1451926\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/frai.2024.1451926","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

引言非线性和非稳态过程普遍存在于各种自然和物理现象中,系统动态会因分岔现象而发生质的变化。机器学习方法提高了我们从观测到的时间序列数据中学习和预测此类系统的能力。然而,在不知道真实参数值的情况下预测具有时间参数变化的系统行为仍然是一项重大挑战:本研究利用水库计算框架来解决这一问题,即从时间序列数据中无监督地提取缓慢变化的系统参数。我们提出了一种模型架构,包括一个具有长时间尺度内部动态变化的慢水库和一个具有短时间尺度动态变化的快水库。慢速库提取系统参数的时间变化,然后用于预测快速动态中的未知分岔:结果:通过对混沌动力学系统的实验,我们提出的模型成功提取了缓慢变化的系统参数,并预测了训练数据中未包含的分岔。该模型表现出稳健的预测性能,表明水库计算框架可以在不预先知道系统真实参数的情况下处理非线性、非稳态系统:我们的方法显示了在神经科学、材料科学和天气预测等领域的应用潜力,在这些领域,影响质变的缓慢动态变化往往是不可观测的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Prediction of unobserved bifurcation by unsupervised extraction of slowly time-varying system parameter dynamics from time series using reservoir computing.

Introduction: Nonlinear and non-stationary processes are prevalent in various natural and physical phenomena, where system dynamics can change qualitatively due to bifurcation phenomena. Machine learning methods have advanced our ability to learn and predict such systems from observed time series data. However, predicting the behavior of systems with temporal parameter variations without knowledge of true parameter values remains a significant challenge.

Methods: This study uses reservoir computing framework to address this problem by unsupervised extraction of slowly varying system parameters from time series data. We propose a model architecture consisting of a slow reservoir with long timescale internal dynamics and a fast reservoir with short timescale dynamics. The slow reservoir extracts the temporal variation of system parameters, which are then used to predict unknown bifurcations in the fast dynamics.

Results: Through experiments on chaotic dynamical systems, our proposed model successfully extracted slowly varying system parameters and predicted bifurcations that were not included in the training data. The model demonstrated robust predictive performance, showing that the reservoir computing framework can handle nonlinear, non-stationary systems without prior knowledge of the system's true parameters.

Discussion: Our approach shows potential for applications in fields such as neuroscience, material science, and weather prediction, where slow dynamics influencing qualitative changes are often unobservable.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.10
自引率
2.50%
发文量
272
审稿时长
13 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信