得出转录组出发点的生物信息工作流程:现状、数据差距和研究重点。

IF 3.4 3区 医学 Q2 TOXICOLOGY
Jason O'Brien, Constance Mitchell, Scott Auerbach, Liam Doonan, Jessica Ewald, Logan Everett, Adam Faranda, Kamin Johnson, Anthony Reardon, John Rooney, Kan Shao, Robert Stainforth, Matthew Wheeler, Deidre Dalmas Wilk, Andrew Williams, Carole Yauk, Eduardo Costa
{"title":"得出转录组出发点的生物信息工作流程:现状、数据差距和研究重点。","authors":"Jason O'Brien, Constance Mitchell, Scott Auerbach, Liam Doonan, Jessica Ewald, Logan Everett, Adam Faranda, Kamin Johnson, Anthony Reardon, John Rooney, Kan Shao, Robert Stainforth, Matthew Wheeler, Deidre Dalmas Wilk, Andrew Williams, Carole Yauk, Eduardo Costa","doi":"10.1093/toxsci/kfae145","DOIUrl":null,"url":null,"abstract":"<p><p>There is a pressing need to increase the efficiency and reliability of toxicological safety assessment for protecting human health and the environment. While conventional toxicology tests rely on measuring apical changes in vertebrate models, there is increasing interest in the use of molecular information from animal and in vitro studies to inform safety assessment. One promising and pragmatic application of molecular information involves the derivation of transcriptomic points of departure (tPODs). Transcriptomic analyses provide a snapshot of global molecular changes that reflect cellular responses to stressors and progression toward disease. A tPOD identifies the dose level below which a concerted change in gene expression is not expected in a biological system in response to a chemical. A common approach to derive such a tPOD consists of modeling the dose-response behavior for each gene independently and then aggregating the gene-level data into a single tPOD. While different implementations of this approach are possible, as discussed in this manuscript, research strongly supports the overall idea that reference doses produced using tPODs are health protective. An advantage of this approach is that tPODs can be generated in shorter term studies (e.g., days) compared to apical endpoints from conventional tests (e.g., 90-day sub-chronic rodent tests). Moreover, research strongly supports the idea that reference doses produced using tPODs are health protective. Given the potential application of tPODs in regulatory toxicology testing, rigorous and reproducible wet and dry laboratory methodologies for their derivation are required. This review summarizes the current state of the science regarding the study design and bioinformatics workflows for tPOD derivation. We identify standards of practice and sources of variability in tPOD generation, data gaps, and areas of uncertainty. We provide recommendations for research to address barriers and promote adoption in regulatory decision making.</p>","PeriodicalId":23178,"journal":{"name":"Toxicological Sciences","volume":" ","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bioinformatic Workflows for Deriving Transcriptomic Points of Departure: Current status, Data Gaps, and Research Priorities.\",\"authors\":\"Jason O'Brien, Constance Mitchell, Scott Auerbach, Liam Doonan, Jessica Ewald, Logan Everett, Adam Faranda, Kamin Johnson, Anthony Reardon, John Rooney, Kan Shao, Robert Stainforth, Matthew Wheeler, Deidre Dalmas Wilk, Andrew Williams, Carole Yauk, Eduardo Costa\",\"doi\":\"10.1093/toxsci/kfae145\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>There is a pressing need to increase the efficiency and reliability of toxicological safety assessment for protecting human health and the environment. While conventional toxicology tests rely on measuring apical changes in vertebrate models, there is increasing interest in the use of molecular information from animal and in vitro studies to inform safety assessment. One promising and pragmatic application of molecular information involves the derivation of transcriptomic points of departure (tPODs). Transcriptomic analyses provide a snapshot of global molecular changes that reflect cellular responses to stressors and progression toward disease. A tPOD identifies the dose level below which a concerted change in gene expression is not expected in a biological system in response to a chemical. A common approach to derive such a tPOD consists of modeling the dose-response behavior for each gene independently and then aggregating the gene-level data into a single tPOD. While different implementations of this approach are possible, as discussed in this manuscript, research strongly supports the overall idea that reference doses produced using tPODs are health protective. An advantage of this approach is that tPODs can be generated in shorter term studies (e.g., days) compared to apical endpoints from conventional tests (e.g., 90-day sub-chronic rodent tests). Moreover, research strongly supports the idea that reference doses produced using tPODs are health protective. Given the potential application of tPODs in regulatory toxicology testing, rigorous and reproducible wet and dry laboratory methodologies for their derivation are required. This review summarizes the current state of the science regarding the study design and bioinformatics workflows for tPOD derivation. We identify standards of practice and sources of variability in tPOD generation, data gaps, and areas of uncertainty. We provide recommendations for research to address barriers and promote adoption in regulatory decision making.</p>\",\"PeriodicalId\":23178,\"journal\":{\"name\":\"Toxicological Sciences\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Toxicological Sciences\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1093/toxsci/kfae145\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"TOXICOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxicological Sciences","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/toxsci/kfae145","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"TOXICOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

目前迫切需要提高毒理学安全评估的效率和可靠性,以保护人类健康和环境。虽然传统的毒理学测试依赖于测量脊椎动物模型的顶端变化,但人们对使用来自动物和体外研究的分子信息为安全评估提供信息的兴趣与日俱增。分子信息的一个前景广阔而又实用的应用涉及到转录组出发点(tPODs)的推导。转录组分析提供了全球分子变化的快照,反映了细胞对应激源的反应和疾病的进展。tPOD 可确定剂量水平,低于该剂量水平,生物系统对某种化学品的反应就不会出现基因表达的协同变化。推导这种 tPOD 的常用方法包括对每个基因的剂量反应行为进行独立建模,然后将基因水平的数据汇总到一个 tPOD 中。虽然这种方法可以有不同的实施方式,但正如本手稿中所讨论的那样,研究结果有力地支持了使用 tPOD 生成的参考剂量具有健康保护作用这一总体观点。这种方法的一个优势是,与传统试验(如 90 天亚慢性啮齿动物试验)的顶点终点相比,tPOD 可以在较短的研究期限(如几天)内产生。此外,研究还有力地支持了使用 tPODs 产生的参考剂量具有健康保护作用的观点。鉴于 tPODs 在监管毒理学测试中的潜在应用,需要采用严格、可重复的湿法和干法实验室方法来推导 tPODs。本综述总结了有关 tPOD 衍生的研究设计和生物信息学工作流程的科学现状。我们确定了 tPOD 生成的实践标准和变异来源、数据缺口和不确定领域。我们提出了研究建议,以解决监管决策中的障碍并促进采用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bioinformatic Workflows for Deriving Transcriptomic Points of Departure: Current status, Data Gaps, and Research Priorities.

There is a pressing need to increase the efficiency and reliability of toxicological safety assessment for protecting human health and the environment. While conventional toxicology tests rely on measuring apical changes in vertebrate models, there is increasing interest in the use of molecular information from animal and in vitro studies to inform safety assessment. One promising and pragmatic application of molecular information involves the derivation of transcriptomic points of departure (tPODs). Transcriptomic analyses provide a snapshot of global molecular changes that reflect cellular responses to stressors and progression toward disease. A tPOD identifies the dose level below which a concerted change in gene expression is not expected in a biological system in response to a chemical. A common approach to derive such a tPOD consists of modeling the dose-response behavior for each gene independently and then aggregating the gene-level data into a single tPOD. While different implementations of this approach are possible, as discussed in this manuscript, research strongly supports the overall idea that reference doses produced using tPODs are health protective. An advantage of this approach is that tPODs can be generated in shorter term studies (e.g., days) compared to apical endpoints from conventional tests (e.g., 90-day sub-chronic rodent tests). Moreover, research strongly supports the idea that reference doses produced using tPODs are health protective. Given the potential application of tPODs in regulatory toxicology testing, rigorous and reproducible wet and dry laboratory methodologies for their derivation are required. This review summarizes the current state of the science regarding the study design and bioinformatics workflows for tPOD derivation. We identify standards of practice and sources of variability in tPOD generation, data gaps, and areas of uncertainty. We provide recommendations for research to address barriers and promote adoption in regulatory decision making.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Toxicological Sciences
Toxicological Sciences 医学-毒理学
CiteScore
7.70
自引率
7.90%
发文量
118
审稿时长
1.5 months
期刊介绍: The mission of Toxicological Sciences, the official journal of the Society of Toxicology, is to publish a broad spectrum of impactful research in the field of toxicology. The primary focus of Toxicological Sciences is on original research articles. The journal also provides expert insight via contemporary and systematic reviews, as well as forum articles and editorial content that addresses important topics in the field. The scope of Toxicological Sciences is focused on a broad spectrum of impactful toxicological research that will advance the multidisciplinary field of toxicology ranging from basic research to model development and application, and decision making. Submissions will include diverse technologies and approaches including, but not limited to: bioinformatics and computational biology, biochemistry, exposure science, histopathology, mass spectrometry, molecular biology, population-based sciences, tissue and cell-based systems, and whole-animal studies. Integrative approaches that combine realistic exposure scenarios with impactful analyses that move the field forward are encouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信