自动糖尿病视网膜病变图像评估软件:IDx-DR 和 RetCAD 的诊断准确性。

IF 2.6 3区 医学 Q2 OPHTHALMOLOGY
Andrzej Grzybowski, Piotr Brona, Tomasz Krzywicki, Paisan Ruamviboonsuk
{"title":"自动糖尿病视网膜病变图像评估软件:IDx-DR 和 RetCAD 的诊断准确性。","authors":"Andrzej Grzybowski, Piotr Brona, Tomasz Krzywicki, Paisan Ruamviboonsuk","doi":"10.1007/s40123-024-01049-z","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Automated diabetic retinopathy (DR) screening using artificial intelligence has the potential to improve access to eye care by enabling large-scale screening. However, little is known about differences in real-world performance between available algorithms. This study compares the diagnostic accuracy of two AI screening platforms, IDx-DR and RetCAD, for detecting referable diabetic retinopathy (RDR).</p><p><strong>Methods: </strong>Retinal images from 758 patients with diabetes were collected during screening from various clinics in Poland. Each patient was graded by three graders with 320 patients graded by Polish and 438 patients graded by Indian graders, with the majority decision serving as the reference standard. The images were evaluated independently by the IDx-DR and RetCAD algorithms. Sensitivity, specificity, positive and negative predictive values, and agreement between algorithms and human graders were calculated and statistically compared.</p><p><strong>Results: </strong>IDx-DR demonstrated higher sensitivity of 99.3% but lower specificity of 68.9% for RDR detection compared to RetCAD which had 89.4% sensitivity and 94.8% specificity. The positive predictive value was higher for RetCAD (96.4% vs 48.1% for IDx-DR) while the negative predictive value was higher for IDx-DR (99.5% vs 83.1% for RetCAD). Both algorithms achieved high sensitivity (> 95%) for sight-threatening diabetic retinopathy detection.</p><p><strong>Conclusion: </strong>In this direct comparison using the same patient cohort, the two algorithms showed differences in their operating parameters for RDR screening. IDx-DR prioritized avoiding false negatives over false positives while RetCAD maintained a more balanced trade-off. These results highlight the variable performance of current artificial intelligence screening solutions and suggest the importance of considering algorithm performance metrics when deploying automated diabetic retinopathy screening programs, based on available healthcare resources.</p>","PeriodicalId":19623,"journal":{"name":"Ophthalmology and Therapy","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Diagnostic Accuracy of Automated Diabetic Retinopathy Image Assessment Software: IDx-DR and RetCAD.\",\"authors\":\"Andrzej Grzybowski, Piotr Brona, Tomasz Krzywicki, Paisan Ruamviboonsuk\",\"doi\":\"10.1007/s40123-024-01049-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>Automated diabetic retinopathy (DR) screening using artificial intelligence has the potential to improve access to eye care by enabling large-scale screening. However, little is known about differences in real-world performance between available algorithms. This study compares the diagnostic accuracy of two AI screening platforms, IDx-DR and RetCAD, for detecting referable diabetic retinopathy (RDR).</p><p><strong>Methods: </strong>Retinal images from 758 patients with diabetes were collected during screening from various clinics in Poland. Each patient was graded by three graders with 320 patients graded by Polish and 438 patients graded by Indian graders, with the majority decision serving as the reference standard. The images were evaluated independently by the IDx-DR and RetCAD algorithms. Sensitivity, specificity, positive and negative predictive values, and agreement between algorithms and human graders were calculated and statistically compared.</p><p><strong>Results: </strong>IDx-DR demonstrated higher sensitivity of 99.3% but lower specificity of 68.9% for RDR detection compared to RetCAD which had 89.4% sensitivity and 94.8% specificity. The positive predictive value was higher for RetCAD (96.4% vs 48.1% for IDx-DR) while the negative predictive value was higher for IDx-DR (99.5% vs 83.1% for RetCAD). Both algorithms achieved high sensitivity (> 95%) for sight-threatening diabetic retinopathy detection.</p><p><strong>Conclusion: </strong>In this direct comparison using the same patient cohort, the two algorithms showed differences in their operating parameters for RDR screening. IDx-DR prioritized avoiding false negatives over false positives while RetCAD maintained a more balanced trade-off. These results highlight the variable performance of current artificial intelligence screening solutions and suggest the importance of considering algorithm performance metrics when deploying automated diabetic retinopathy screening programs, based on available healthcare resources.</p>\",\"PeriodicalId\":19623,\"journal\":{\"name\":\"Ophthalmology and Therapy\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ophthalmology and Therapy\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s40123-024-01049-z\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OPHTHALMOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ophthalmology and Therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s40123-024-01049-z","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPHTHALMOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

简介:利用人工智能进行糖尿病视网膜病变(DR)自动筛查有可能实现大规模筛查,从而改善眼科保健的可及性。然而,人们对现有算法在现实世界中的性能差异知之甚少。本研究比较了 IDx-DR 和 RetCAD 这两种人工智能筛查平台在检测可转诊糖尿病视网膜病变 (RDR) 方面的诊断准确性:方法:在波兰多家诊所筛查期间,收集了 758 名糖尿病患者的视网膜图像。每名患者由三名分级人员分级,其中 320 名患者由波兰分级人员分级,438 名患者由印度分级人员分级,以多数人的决定作为参考标准。图像由 IDx-DR 和 RetCAD 算法独立评估。计算并统计比较了灵敏度、特异性、阳性和阴性预测值以及算法与人类分级人员之间的一致性:IDx-DR检测RDR的灵敏度为99.3%,特异性为68.9%,而RetCAD的灵敏度为89.4%,特异性为94.8%。RetCAD 的阳性预测值更高(96.4% 对 IDx-DR 的 48.1%),而 IDx-DR 的阴性预测值更高(99.5% 对 RetCAD 的 83.1%)。两种算法对危及视力的糖尿病视网膜病变检测的灵敏度都很高(> 95%):结论:在这次使用相同患者群进行的直接比较中,两种算法在 RDR 筛查的操作参数上存在差异。IDx-DR 优先避免假阴性而不是假阳性,而 RetCAD 则保持了更平衡的权衡。这些结果凸显了当前人工智能筛查解决方案的性能参差不齐,并表明在部署自动糖尿病视网膜病变筛查项目时,根据可用的医疗资源考虑算法性能指标非常重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Diagnostic Accuracy of Automated Diabetic Retinopathy Image Assessment Software: IDx-DR and RetCAD.

Introduction: Automated diabetic retinopathy (DR) screening using artificial intelligence has the potential to improve access to eye care by enabling large-scale screening. However, little is known about differences in real-world performance between available algorithms. This study compares the diagnostic accuracy of two AI screening platforms, IDx-DR and RetCAD, for detecting referable diabetic retinopathy (RDR).

Methods: Retinal images from 758 patients with diabetes were collected during screening from various clinics in Poland. Each patient was graded by three graders with 320 patients graded by Polish and 438 patients graded by Indian graders, with the majority decision serving as the reference standard. The images were evaluated independently by the IDx-DR and RetCAD algorithms. Sensitivity, specificity, positive and negative predictive values, and agreement between algorithms and human graders were calculated and statistically compared.

Results: IDx-DR demonstrated higher sensitivity of 99.3% but lower specificity of 68.9% for RDR detection compared to RetCAD which had 89.4% sensitivity and 94.8% specificity. The positive predictive value was higher for RetCAD (96.4% vs 48.1% for IDx-DR) while the negative predictive value was higher for IDx-DR (99.5% vs 83.1% for RetCAD). Both algorithms achieved high sensitivity (> 95%) for sight-threatening diabetic retinopathy detection.

Conclusion: In this direct comparison using the same patient cohort, the two algorithms showed differences in their operating parameters for RDR screening. IDx-DR prioritized avoiding false negatives over false positives while RetCAD maintained a more balanced trade-off. These results highlight the variable performance of current artificial intelligence screening solutions and suggest the importance of considering algorithm performance metrics when deploying automated diabetic retinopathy screening programs, based on available healthcare resources.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Ophthalmology and Therapy
Ophthalmology and Therapy OPHTHALMOLOGY-
CiteScore
4.20
自引率
3.00%
发文量
157
审稿时长
6 weeks
期刊介绍: Aims and Scope Ophthalmology and Therapy is an international, open access, peer-reviewed (single-blind), and rapid publication journal. The scope of the journal is broad and will consider all scientifically sound research from preclinical, clinical (all phases), observational, real-world, and health outcomes research around the use of ophthalmological therapies, devices, and surgical techniques. The journal is of interest to a broad audience of pharmaceutical and healthcare professionals and publishes original research, reviews, case reports/series, trial protocols and short communications such as commentaries and editorials. Ophthalmology and Therapy will consider all scientifically sound research be it positive, confirmatory or negative data. Submissions are welcomed whether they relate to an international and/or a country-specific audience, something that is crucially important when researchers are trying to target more specific patient populations. This inclusive approach allows the journal to assist in the dissemination of quality research, which may be considered of insufficient interest by other journals. Rapid Publication The journal’s publication timelines aim for a rapid peer review of 2 weeks. If an article is accepted it will be published 3–4 weeks from acceptance. The rapid timelines are achieved through the combination of a dedicated in-house editorial team, who manage article workflow, and an extensive Editorial and Advisory Board who assist with peer review. This allows the journal to support the rapid dissemination of research, whilst still providing robust peer review. Combined with the journal’s open access model this allows for the rapid, efficient communication of the latest research and reviews, fostering the advancement of ophthalmic therapies. Open Access All articles published by Ophthalmology and Therapy are open access. Personal Service The journal’s dedicated in-house editorial team offer a personal “concierge service” meaning authors will always have an editorial contact able to update them on the status of their manuscript. The editorial team check all manuscripts to ensure that articles conform to the most recent COPE, GPP and ICMJE publishing guidelines. This supports the publication of ethically sound and transparent research. Digital Features and Plain Language Summaries Ophthalmology and Therapy offers a range of additional features designed to increase the visibility, readership and educational value of the journal’s content. Each article is accompanied by key summary points, giving a time-efficient overview of the content to a wide readership. Articles may be accompanied by plain language summaries to assist readers who have some knowledge of, but not in-depth expertise in, the area to understand the scientific content and overall implications of the article. The journal also provides the option to include various types of digital features including animated abstracts, video abstracts, slide decks, audio slides, instructional videos, infographics, podcasts and animations. All additional features are peer reviewed to the same high standard as the article itself. If you consider that your paper would benefit from the inclusion of a digital feature, please let us know. Our editorial team are able to create high-quality slide decks and infographics in-house, and video abstracts through our partner Research Square, and would be happy to assist in any way we can. For further information about digital features, please contact the journal editor (see ‘Contact the Journal’ for email address), and see the ‘Guidelines for digital features and plain language summaries’ document under ‘Submission guidelines’. For examples of digital features please visit our showcase page https://springerhealthcare.com/expertise/publishing-digital-features/ Publication Fees Upon acceptance of an article, authors will be required to pay the mandatory Rapid Service Fee of €5250/$6000/£4300. The journal will consider fee discounts and waivers for developing countries and this is decided on a case by case basis. Peer Review Process Upon submission, manuscripts are assessed by the editorial team to ensure they fit within the aims and scope of the journal and are also checked for plagiarism. All suitable submissions are then subject to a comprehensive single-blind peer review. Reviewers are selected based on their relevant expertise and publication history in the subject area. The journal has an extensive pool of editorial and advisory board members who have been selected to assist with peer review based on the afore-mentioned criteria. At least two extensive reviews are required to make the editorial decision, with the exception of some article types such as Commentaries, Editorials, and Letters which are generally reviewed by one member of the Editorial Board. Where reviewer recommendations are conflicted, the editorial board will be contacted for further advice and a presiding decision. Manuscripts are then either accepted, rejected or authors are required to make major or minor revisions (both reviewer comments and editorial comments may need to be addressed). Once a revised manuscript is re-submitted, it is assessed along with the responses to reviewer comments and if it has been adequately revised it will be accepted for publication. Accepted manuscripts are then copyedited and typeset by the production team before online publication. Appeals against decisions following peer review are considered on a case-by-case basis and should be sent to the journal editor. Preprints We encourage posting of preprints of primary research manuscripts on preprint servers, authors’ or institutional websites, and open communications between researchers whether on community preprint servers or preprint commenting platforms. Posting of preprints is not considered prior publication and will not jeopardize consideration in our journals. Authors should disclose details of preprint posting during the submission process or at any other point during consideration in one of our journals. Once the manuscript is published, it is the author’s responsibility to ensure that the preprint record is updated with a publication reference, including the DOI and a URL link to the published version of the article on the journal website. Please follow the link for further information on preprint sharing: https://www.springer.com/gp/authors-editors/journal-author/journal-author-helpdesk/submission/1302#c16721550 Copyright Ophthalmology and Therapy''s content is published open access under the Creative Commons Attribution-Noncommercial License, which allows users to read, copy, distribute, and make derivative works for non-commercial purposes from the material, as long as the author of the original work is cited. The author assigns the exclusive right to any commercial use of the article to Springer. For more information about the Creative Commons Attribution-Noncommercial License, click here: http://creativecommons.org/licenses/by-nc/4.0. Contact For more information about the journal, including pre-submission enquiries, please contact christopher.vautrinot@springer.com.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信