Chengjiang Fan, Ziyang Luo, Qingfang Zheng, Yuhang Xu, Yao Xu, Jianing Chen, You Meng, Haizhong Jiang, Kaitai Liu, Yang Xi
{"title":"细胞色素通过自噬降解结直肠癌细胞中的铁蛋白来增强铁蛋白沉积。","authors":"Chengjiang Fan, Ziyang Luo, Qingfang Zheng, Yuhang Xu, Yao Xu, Jianing Chen, You Meng, Haizhong Jiang, Kaitai Liu, Yang Xi","doi":"10.1007/s11010-024-05148-0","DOIUrl":null,"url":null,"abstract":"<p><p>Autophagy has gained importance in the context of ferroptosis. Nevertheless, a deeper understanding of the regulatory mechanism governing autophagy-dependent ferroptosis is necessary. Cytoglobin (CYGB), a member of the globin family, exhibits antifibrotic effects, regulates cellular reactive oxygen species, and stimulates tumor inhibition. Herein, we present further insights into the role of CYGB in ferroptosis regulation. Our investigation confirmed that CYGB impedes cell proliferation and migration. Furthermore, a significant association between CYGB and the lysosomal pathway was suggested based on the RNA sequencing data analysis. Elevated lysosomal signal and colocalization of CYGB with lysosome-associated membrane glycoprotein 1 (LAMP1) were observed. Moreover, upregulated autophagy and augmented ferroptosis induced by RSL3 were confirmed in CYGB-overexpression cells with an obviously increased colocalization of nuclear receptor coactivator 4 (NCOA4) and LC3B. The autophagy inhibitor bafilomycin or chloroquine alleviated autophagy-dependent degradation of ferritin protein under RSL3 treated condition. Additionally, a colocalization of CYGB with the transferrin receptor (TFR) was confirmed. Our results demonstrate an important functional pathway by which CYGB regulates ferroptosis through TFR-binding and autophagic degradation of ferritin, and provide a potential pathway for the treatment of colorectal cancer.</p>","PeriodicalId":18724,"journal":{"name":"Molecular and Cellular Biochemistry","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cytoglobin augments ferroptosis through autophagic degradation of ferritin in colorectal cancer cells.\",\"authors\":\"Chengjiang Fan, Ziyang Luo, Qingfang Zheng, Yuhang Xu, Yao Xu, Jianing Chen, You Meng, Haizhong Jiang, Kaitai Liu, Yang Xi\",\"doi\":\"10.1007/s11010-024-05148-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Autophagy has gained importance in the context of ferroptosis. Nevertheless, a deeper understanding of the regulatory mechanism governing autophagy-dependent ferroptosis is necessary. Cytoglobin (CYGB), a member of the globin family, exhibits antifibrotic effects, regulates cellular reactive oxygen species, and stimulates tumor inhibition. Herein, we present further insights into the role of CYGB in ferroptosis regulation. Our investigation confirmed that CYGB impedes cell proliferation and migration. Furthermore, a significant association between CYGB and the lysosomal pathway was suggested based on the RNA sequencing data analysis. Elevated lysosomal signal and colocalization of CYGB with lysosome-associated membrane glycoprotein 1 (LAMP1) were observed. Moreover, upregulated autophagy and augmented ferroptosis induced by RSL3 were confirmed in CYGB-overexpression cells with an obviously increased colocalization of nuclear receptor coactivator 4 (NCOA4) and LC3B. The autophagy inhibitor bafilomycin or chloroquine alleviated autophagy-dependent degradation of ferritin protein under RSL3 treated condition. Additionally, a colocalization of CYGB with the transferrin receptor (TFR) was confirmed. Our results demonstrate an important functional pathway by which CYGB regulates ferroptosis through TFR-binding and autophagic degradation of ferritin, and provide a potential pathway for the treatment of colorectal cancer.</p>\",\"PeriodicalId\":18724,\"journal\":{\"name\":\"Molecular and Cellular Biochemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular and Cellular Biochemistry\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s11010-024-05148-0\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular and Cellular Biochemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s11010-024-05148-0","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Cytoglobin augments ferroptosis through autophagic degradation of ferritin in colorectal cancer cells.
Autophagy has gained importance in the context of ferroptosis. Nevertheless, a deeper understanding of the regulatory mechanism governing autophagy-dependent ferroptosis is necessary. Cytoglobin (CYGB), a member of the globin family, exhibits antifibrotic effects, regulates cellular reactive oxygen species, and stimulates tumor inhibition. Herein, we present further insights into the role of CYGB in ferroptosis regulation. Our investigation confirmed that CYGB impedes cell proliferation and migration. Furthermore, a significant association between CYGB and the lysosomal pathway was suggested based on the RNA sequencing data analysis. Elevated lysosomal signal and colocalization of CYGB with lysosome-associated membrane glycoprotein 1 (LAMP1) were observed. Moreover, upregulated autophagy and augmented ferroptosis induced by RSL3 were confirmed in CYGB-overexpression cells with an obviously increased colocalization of nuclear receptor coactivator 4 (NCOA4) and LC3B. The autophagy inhibitor bafilomycin or chloroquine alleviated autophagy-dependent degradation of ferritin protein under RSL3 treated condition. Additionally, a colocalization of CYGB with the transferrin receptor (TFR) was confirmed. Our results demonstrate an important functional pathway by which CYGB regulates ferroptosis through TFR-binding and autophagic degradation of ferritin, and provide a potential pathway for the treatment of colorectal cancer.
期刊介绍:
Molecular and Cellular Biochemistry: An International Journal for Chemical Biology in Health and Disease publishes original research papers and short communications in all areas of the biochemical sciences, emphasizing novel findings relevant to the biochemical basis of cellular function and disease processes, as well as the mechanics of action of hormones and chemical agents. Coverage includes membrane transport, receptor mechanism, immune response, secretory processes, and cytoskeletal function, as well as biochemical structure-function relationships in the cell.
In addition to the reports of original research, the journal publishes state of the art reviews. Specific subjects covered by Molecular and Cellular Biochemistry include cellular metabolism, cellular pathophysiology, enzymology, ion transport, lipid biochemistry, membrane biochemistry, molecular biology, nuclear structure and function, and protein chemistry.