用于脊柱活动度评估的多磁场和惯性传感器可穿戴系统的机器学习优化设计方法。

IF 5.2 2区 医学 Q1 ENGINEERING, BIOMEDICAL
Dalia Y Domínguez-Jiménez, Adriana Martínez-Hernández, Gustavo Pacheco-Santiago, Julio C Casasola-Vargas, Rubén Burgos-Vargas, Miguel A Padilla-Castañeda
{"title":"用于脊柱活动度评估的多磁场和惯性传感器可穿戴系统的机器学习优化设计方法。","authors":"Dalia Y Domínguez-Jiménez, Adriana Martínez-Hernández, Gustavo Pacheco-Santiago, Julio C Casasola-Vargas, Rubén Burgos-Vargas, Miguel A Padilla-Castañeda","doi":"10.1186/s12984-024-01484-w","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Recently, magnetic and inertial measurement units (MIMU) based systems have been applied in the spine mobility assessment; this evaluation is essential in the clinical practice for diagnosis and treatment evaluation. The available systems are limited in the number of sensors, and neither develops a methodology for the correct placement of the sensors, seeking the relevant mobility information of the spine.</p><p><strong>Methods: </strong>This work presents a methodology for analyzing a system consisting of sixteen MIMUs to reduce the amount of information and obtain an optimal configuration that allows distinguishing between different body postures in a movement. Four machine learning algorithms were trained and assessed using data from the range of motion in three movements (Mov.1-Anterior hip flexion; Mov.2-Lateral trunk flexion; Mov.3-Axial trunk rotation) obtained from 12 patients with Ankylosing Spondylitis.</p><p><strong>Results: </strong>The methodology identified the optimal minimal configuration for different movements. The configuration showed good accuracy in discriminating between different body postures. Specifically, it had an accuracy of 0.963 ± 0.021 for detecting when the subject is upright or bending in Mov.1, 0.944 ± 0.038 for identifying when the subject is flexed to the left or right in Mov.2, and 0.852 ± 0.097 for recognizing when the subject is rotated to the right or left in Mov.3.</p><p><strong>Conclusions: </strong>Our results indicate that the methodology developed results in a feasible configuration for practical clinical studies and paves the way for designing specific IMU-based assessment instruments.</p><p><strong>Trial registration: </strong>Study approved by the Local Ethics Committee of the General Hospital of Mexico \"Dr. Eduardo Liceaga\" (protocol code DI/03/17/471).</p>","PeriodicalId":16384,"journal":{"name":"Journal of NeuroEngineering and Rehabilitation","volume":"21 1","pages":"198"},"PeriodicalIF":5.2000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11536966/pdf/","citationCount":"0","resultStr":"{\"title\":\"A machine learning approach for the design optimization of a multiple magnetic and inertial sensors wearable system for the spine mobility assessment.\",\"authors\":\"Dalia Y Domínguez-Jiménez, Adriana Martínez-Hernández, Gustavo Pacheco-Santiago, Julio C Casasola-Vargas, Rubén Burgos-Vargas, Miguel A Padilla-Castañeda\",\"doi\":\"10.1186/s12984-024-01484-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Recently, magnetic and inertial measurement units (MIMU) based systems have been applied in the spine mobility assessment; this evaluation is essential in the clinical practice for diagnosis and treatment evaluation. The available systems are limited in the number of sensors, and neither develops a methodology for the correct placement of the sensors, seeking the relevant mobility information of the spine.</p><p><strong>Methods: </strong>This work presents a methodology for analyzing a system consisting of sixteen MIMUs to reduce the amount of information and obtain an optimal configuration that allows distinguishing between different body postures in a movement. Four machine learning algorithms were trained and assessed using data from the range of motion in three movements (Mov.1-Anterior hip flexion; Mov.2-Lateral trunk flexion; Mov.3-Axial trunk rotation) obtained from 12 patients with Ankylosing Spondylitis.</p><p><strong>Results: </strong>The methodology identified the optimal minimal configuration for different movements. The configuration showed good accuracy in discriminating between different body postures. Specifically, it had an accuracy of 0.963 ± 0.021 for detecting when the subject is upright or bending in Mov.1, 0.944 ± 0.038 for identifying when the subject is flexed to the left or right in Mov.2, and 0.852 ± 0.097 for recognizing when the subject is rotated to the right or left in Mov.3.</p><p><strong>Conclusions: </strong>Our results indicate that the methodology developed results in a feasible configuration for practical clinical studies and paves the way for designing specific IMU-based assessment instruments.</p><p><strong>Trial registration: </strong>Study approved by the Local Ethics Committee of the General Hospital of Mexico \\\"Dr. Eduardo Liceaga\\\" (protocol code DI/03/17/471).</p>\",\"PeriodicalId\":16384,\"journal\":{\"name\":\"Journal of NeuroEngineering and Rehabilitation\",\"volume\":\"21 1\",\"pages\":\"198\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2024-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11536966/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of NeuroEngineering and Rehabilitation\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1186/s12984-024-01484-w\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of NeuroEngineering and Rehabilitation","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s12984-024-01484-w","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

背景:最近,基于磁性和惯性测量单元(MIMU)的系统被应用于脊柱活动度评估;这种评估在临床实践中对诊断和治疗评估至关重要。现有系统的传感器数量有限,而且都没有制定正确放置传感器的方法,以寻求相关的脊柱活动度信息:本研究提出了一种分析由十六个多传感器单元组成的系统的方法,以减少信息量,获得最佳配置,从而区分运动中的不同身体姿势。利用从 12 名强直性脊柱炎患者处获得的三个动作(Mov.1-髋关节前屈;Mov.2-躯干侧屈;Mov.3-躯干轴向旋转)的运动范围数据,对四种机器学习算法进行了训练和评估:该方法确定了不同运动的最佳最小配置。该配置在区分不同身体姿势方面表现出良好的准确性。具体地说,在运动 1 中,该配置检测主体直立或弯曲的准确率为 0.963 ± 0.021;在运动 2 中,该配置识别主体向左或向右弯曲的准确率为 0.944 ± 0.038;在运动 3 中,该配置识别主体向右或向左旋转的准确率为 0.852 ± 0.097:我们的结果表明,所开发的方法为实际临床研究提供了可行的配置,并为设计基于 IMU 的特定评估工具铺平了道路:研究获得了墨西哥 "爱德华多-利萨加博士 "总医院地方伦理委员会的批准(方案代码 DI/03/17/471)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A machine learning approach for the design optimization of a multiple magnetic and inertial sensors wearable system for the spine mobility assessment.

Background: Recently, magnetic and inertial measurement units (MIMU) based systems have been applied in the spine mobility assessment; this evaluation is essential in the clinical practice for diagnosis and treatment evaluation. The available systems are limited in the number of sensors, and neither develops a methodology for the correct placement of the sensors, seeking the relevant mobility information of the spine.

Methods: This work presents a methodology for analyzing a system consisting of sixteen MIMUs to reduce the amount of information and obtain an optimal configuration that allows distinguishing between different body postures in a movement. Four machine learning algorithms were trained and assessed using data from the range of motion in three movements (Mov.1-Anterior hip flexion; Mov.2-Lateral trunk flexion; Mov.3-Axial trunk rotation) obtained from 12 patients with Ankylosing Spondylitis.

Results: The methodology identified the optimal minimal configuration for different movements. The configuration showed good accuracy in discriminating between different body postures. Specifically, it had an accuracy of 0.963 ± 0.021 for detecting when the subject is upright or bending in Mov.1, 0.944 ± 0.038 for identifying when the subject is flexed to the left or right in Mov.2, and 0.852 ± 0.097 for recognizing when the subject is rotated to the right or left in Mov.3.

Conclusions: Our results indicate that the methodology developed results in a feasible configuration for practical clinical studies and paves the way for designing specific IMU-based assessment instruments.

Trial registration: Study approved by the Local Ethics Committee of the General Hospital of Mexico "Dr. Eduardo Liceaga" (protocol code DI/03/17/471).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of NeuroEngineering and Rehabilitation
Journal of NeuroEngineering and Rehabilitation 工程技术-工程:生物医学
CiteScore
9.60
自引率
3.90%
发文量
122
审稿时长
24 months
期刊介绍: Journal of NeuroEngineering and Rehabilitation considers manuscripts on all aspects of research that result from cross-fertilization of the fields of neuroscience, biomedical engineering, and physical medicine & rehabilitation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信