{"title":"YTHDC1通过KMT2C-H3K4me1/me3表观遗传轴减弱DNA损伤反应,是B细胞急性淋巴细胞白血病的治疗靶点。","authors":"Xinxin Li, Minhua Zheng, Shoubao Ma, Fengze Nie, Zhiqiang Yin, Yanan Liang, Xianchun Yan, Weihong Wen, Jianhua Yu, Yingmin Liang, Siyong Huang, Hua Han","doi":"10.1038/s41375-024-02451-z","DOIUrl":null,"url":null,"abstract":"<p><p>B-cell acute lymphoblastic leukemia (B-ALL) is an aggressive malignancy characterized by the aberrant accumulation of immature and dysfunctional B cells in bone marrow (BM). Although chemotherapy and other therapies have been widely applied, some patients such as relapsed or drug-refractory (R/R) B-ALL patients exhibit limited response. YT521-B homologous domain-containing protein 1 (YTHDC1) is a nuclear reader of N<sup>6</sup>-methyladenosine (m<sup>6</sup>A) RNA modification, which has been implicated in different malignancies including leukemia. In the current study, we show that YTHDC1 is highly expressed in B-ALL cells. YTHDC1 knockdown attenuated B-ALL cell proliferation and cell cycle progression in vitro, and prolonged survival of mice in the human B-ALL xenograft model in vivo attributable to compromised leukemogenesis. Mechanistically, YTHDC1 knockdown significantly increased the accumulation of endogenous and chemotherapeutic agents-induced DNA damage in B-ALL cells. Furthermore, we identified that YTHDC1 binds to and stabilizes m<sup>6</sup>A-modified KMT2C mRNA. KMT2C is a key enzyme catalyzing histone H3K4 methylation required for the expression of DNA damage response (DDR)-related genes, implying that YTHDC1 inhibitors might improve chemotherapy by attenuating DDR via reducing KMT2C. Indeed, with molecular docking and biochemical experiments, we identified EPZ-5676 as a YTHDC1 inhibitor, and combination of EPZ-5676 with Cytarabine (Ara-c) significantly improved the efficacy of chemotherapy in B-ALL mouse models using YTHDC1<sup>high</sup> primary and lined B-ALL cells. Collectively, YTHDC1 is required for DDR in B-ALL cells by upregulating DDR-related gene expression via stabilizing m<sup>6</sup>A-modified KMT2C mRNA, thereby leading to increased histone H3K4 methylation, and targeted inhibition of YTHDC1 is a potentially new therapeutic strategy against B-ALL, especially YTHDC1<sup>high</sup> B-ALL.</p>","PeriodicalId":18109,"journal":{"name":"Leukemia","volume":" ","pages":""},"PeriodicalIF":12.8000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"YTHDC1 is a therapeutic target for B-cell acute lymphoblastic leukemia by attenuating DNA damage response through the KMT2C-H3K4me1/me3 epigenetic axis.\",\"authors\":\"Xinxin Li, Minhua Zheng, Shoubao Ma, Fengze Nie, Zhiqiang Yin, Yanan Liang, Xianchun Yan, Weihong Wen, Jianhua Yu, Yingmin Liang, Siyong Huang, Hua Han\",\"doi\":\"10.1038/s41375-024-02451-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>B-cell acute lymphoblastic leukemia (B-ALL) is an aggressive malignancy characterized by the aberrant accumulation of immature and dysfunctional B cells in bone marrow (BM). Although chemotherapy and other therapies have been widely applied, some patients such as relapsed or drug-refractory (R/R) B-ALL patients exhibit limited response. YT521-B homologous domain-containing protein 1 (YTHDC1) is a nuclear reader of N<sup>6</sup>-methyladenosine (m<sup>6</sup>A) RNA modification, which has been implicated in different malignancies including leukemia. In the current study, we show that YTHDC1 is highly expressed in B-ALL cells. YTHDC1 knockdown attenuated B-ALL cell proliferation and cell cycle progression in vitro, and prolonged survival of mice in the human B-ALL xenograft model in vivo attributable to compromised leukemogenesis. Mechanistically, YTHDC1 knockdown significantly increased the accumulation of endogenous and chemotherapeutic agents-induced DNA damage in B-ALL cells. Furthermore, we identified that YTHDC1 binds to and stabilizes m<sup>6</sup>A-modified KMT2C mRNA. KMT2C is a key enzyme catalyzing histone H3K4 methylation required for the expression of DNA damage response (DDR)-related genes, implying that YTHDC1 inhibitors might improve chemotherapy by attenuating DDR via reducing KMT2C. Indeed, with molecular docking and biochemical experiments, we identified EPZ-5676 as a YTHDC1 inhibitor, and combination of EPZ-5676 with Cytarabine (Ara-c) significantly improved the efficacy of chemotherapy in B-ALL mouse models using YTHDC1<sup>high</sup> primary and lined B-ALL cells. Collectively, YTHDC1 is required for DDR in B-ALL cells by upregulating DDR-related gene expression via stabilizing m<sup>6</sup>A-modified KMT2C mRNA, thereby leading to increased histone H3K4 methylation, and targeted inhibition of YTHDC1 is a potentially new therapeutic strategy against B-ALL, especially YTHDC1<sup>high</sup> B-ALL.</p>\",\"PeriodicalId\":18109,\"journal\":{\"name\":\"Leukemia\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":12.8000,\"publicationDate\":\"2024-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Leukemia\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1038/s41375-024-02451-z\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"HEMATOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Leukemia","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41375-024-02451-z","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEMATOLOGY","Score":null,"Total":0}
YTHDC1 is a therapeutic target for B-cell acute lymphoblastic leukemia by attenuating DNA damage response through the KMT2C-H3K4me1/me3 epigenetic axis.
B-cell acute lymphoblastic leukemia (B-ALL) is an aggressive malignancy characterized by the aberrant accumulation of immature and dysfunctional B cells in bone marrow (BM). Although chemotherapy and other therapies have been widely applied, some patients such as relapsed or drug-refractory (R/R) B-ALL patients exhibit limited response. YT521-B homologous domain-containing protein 1 (YTHDC1) is a nuclear reader of N6-methyladenosine (m6A) RNA modification, which has been implicated in different malignancies including leukemia. In the current study, we show that YTHDC1 is highly expressed in B-ALL cells. YTHDC1 knockdown attenuated B-ALL cell proliferation and cell cycle progression in vitro, and prolonged survival of mice in the human B-ALL xenograft model in vivo attributable to compromised leukemogenesis. Mechanistically, YTHDC1 knockdown significantly increased the accumulation of endogenous and chemotherapeutic agents-induced DNA damage in B-ALL cells. Furthermore, we identified that YTHDC1 binds to and stabilizes m6A-modified KMT2C mRNA. KMT2C is a key enzyme catalyzing histone H3K4 methylation required for the expression of DNA damage response (DDR)-related genes, implying that YTHDC1 inhibitors might improve chemotherapy by attenuating DDR via reducing KMT2C. Indeed, with molecular docking and biochemical experiments, we identified EPZ-5676 as a YTHDC1 inhibitor, and combination of EPZ-5676 with Cytarabine (Ara-c) significantly improved the efficacy of chemotherapy in B-ALL mouse models using YTHDC1high primary and lined B-ALL cells. Collectively, YTHDC1 is required for DDR in B-ALL cells by upregulating DDR-related gene expression via stabilizing m6A-modified KMT2C mRNA, thereby leading to increased histone H3K4 methylation, and targeted inhibition of YTHDC1 is a potentially new therapeutic strategy against B-ALL, especially YTHDC1high B-ALL.
期刊介绍:
Title: Leukemia
Journal Overview:
Publishes high-quality, peer-reviewed research
Covers all aspects of research and treatment of leukemia and allied diseases
Includes studies of normal hemopoiesis due to comparative relevance
Topics of Interest:
Oncogenes
Growth factors
Stem cells
Leukemia genomics
Cell cycle
Signal transduction
Molecular targets for therapy
And more
Content Types:
Original research articles
Reviews
Letters
Correspondence
Comments elaborating on significant advances and covering topical issues