Geoffroy Vellieux, Emmanuelle Apartis, Paul Baudin, Manuel Alejandro Del Río Quiñones, Diane Villemonte de la Clergerie, Aurélie Kas, Vincent Navarro
{"title":"兰斯-亚当斯综合征肌阵挛起源的多模态评估","authors":"Geoffroy Vellieux, Emmanuelle Apartis, Paul Baudin, Manuel Alejandro Del Río Quiñones, Diane Villemonte de la Clergerie, Aurélie Kas, Vincent Navarro","doi":"10.1212/WNL.0000000000209994","DOIUrl":null,"url":null,"abstract":"<p><strong>Background and objectives: </strong>Lance-Adams syndrome (LAS), or chronic posthypoxic myoclonus, is a long-term disabling neurologic disorder occurring in survivors of anoxia. The cortical or subcortical origin of this myoclonus is unclear. We aimed to identify the neuroanatomical origin of myoclonus in LAS.</p><p><strong>Methods: </strong>We conducted a cross-sectional study and investigated patients diagnosed with LAS from the Department of Neurology of Pitié-Salpêtrière Hospital, using multimodal neurologic explorations: EEG with quantitative analyses, polygraphic EMG recording of myoclonus, coupled EEG-EMG analyses with jerk-locked back averaging, and <sup>18</sup>fluorodeoxyglucose PET/CT imaging.</p><p><strong>Results: </strong>All 18 patients had action multifocal or generalized myoclonus. Eleven patients also presented seizures, mainly generalized tonic-clonic seizures. For 8 patients, myoclonus decreased after seizures for a variable duration, from 1 day to 2 weeks. Epileptiform discharges were identified over the central median region (n = 14), with a maximal amplitude on the Cz (65 ± 20 µV, n = 12) and Fz (107 µV, n = 1) electrodes, and a significantly increased frequency during non-rapid eye movement sleep stages 1 (12 ± 8.5 events/minute, <i>p</i> = 0.004, n = 9) and 2 (11 ± 8.8 events/minute, <i>p</i> = 0.016, n = 7) compared with wake (5.5 ± 5.4 events/minute). The duration of the cortical and muscular events was significantly and positively correlated (ρ = 0.58, <i>p</i> < 0.001, n = 9). Action myoclonic jerks with a duration of <50 ms were confirmed in all patients, with a fast-descending corticospinal way organization with a mean biceps brachii-first interossei dorsalis delay of 9.8 ± 1 ms (n = 8). A central cortical transient preceding the muscular jerks was identified (n = 14), with a mean latency of -31.9 ± 2.9 ms for the tibialis anterior muscle (n = 7). A regional metabolism decrease was observed in the precentral cortex, supplementary motor area, paracentral lobule (n = 6), and postcentral cortex and precuneus (n = 5). This metabolism decrease was bilateral in the precentral cortex for 83% of the patients and in the postcentral cortex for 100%. Hypometabolism in the precentral, supplementary motor, and postcentral areas was confirmed with a voxelwise analysis (<i>p</i> < 10<sup>-3</sup>, n = 6).</p><p><strong>Discussion: </strong>Our findings, based on a large cohort of patients with LAS, strongly suggest a cortical myoclonus, originating within the motor cortex and related to epileptiform mechanisms.</p>","PeriodicalId":19256,"journal":{"name":"Neurology","volume":"103 11","pages":"e209994"},"PeriodicalIF":7.7000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multimodal Assessment of the Origin of Myoclonus in Lance-Adams Syndrome.\",\"authors\":\"Geoffroy Vellieux, Emmanuelle Apartis, Paul Baudin, Manuel Alejandro Del Río Quiñones, Diane Villemonte de la Clergerie, Aurélie Kas, Vincent Navarro\",\"doi\":\"10.1212/WNL.0000000000209994\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background and objectives: </strong>Lance-Adams syndrome (LAS), or chronic posthypoxic myoclonus, is a long-term disabling neurologic disorder occurring in survivors of anoxia. The cortical or subcortical origin of this myoclonus is unclear. We aimed to identify the neuroanatomical origin of myoclonus in LAS.</p><p><strong>Methods: </strong>We conducted a cross-sectional study and investigated patients diagnosed with LAS from the Department of Neurology of Pitié-Salpêtrière Hospital, using multimodal neurologic explorations: EEG with quantitative analyses, polygraphic EMG recording of myoclonus, coupled EEG-EMG analyses with jerk-locked back averaging, and <sup>18</sup>fluorodeoxyglucose PET/CT imaging.</p><p><strong>Results: </strong>All 18 patients had action multifocal or generalized myoclonus. Eleven patients also presented seizures, mainly generalized tonic-clonic seizures. For 8 patients, myoclonus decreased after seizures for a variable duration, from 1 day to 2 weeks. Epileptiform discharges were identified over the central median region (n = 14), with a maximal amplitude on the Cz (65 ± 20 µV, n = 12) and Fz (107 µV, n = 1) electrodes, and a significantly increased frequency during non-rapid eye movement sleep stages 1 (12 ± 8.5 events/minute, <i>p</i> = 0.004, n = 9) and 2 (11 ± 8.8 events/minute, <i>p</i> = 0.016, n = 7) compared with wake (5.5 ± 5.4 events/minute). The duration of the cortical and muscular events was significantly and positively correlated (ρ = 0.58, <i>p</i> < 0.001, n = 9). Action myoclonic jerks with a duration of <50 ms were confirmed in all patients, with a fast-descending corticospinal way organization with a mean biceps brachii-first interossei dorsalis delay of 9.8 ± 1 ms (n = 8). A central cortical transient preceding the muscular jerks was identified (n = 14), with a mean latency of -31.9 ± 2.9 ms for the tibialis anterior muscle (n = 7). A regional metabolism decrease was observed in the precentral cortex, supplementary motor area, paracentral lobule (n = 6), and postcentral cortex and precuneus (n = 5). This metabolism decrease was bilateral in the precentral cortex for 83% of the patients and in the postcentral cortex for 100%. Hypometabolism in the precentral, supplementary motor, and postcentral areas was confirmed with a voxelwise analysis (<i>p</i> < 10<sup>-3</sup>, n = 6).</p><p><strong>Discussion: </strong>Our findings, based on a large cohort of patients with LAS, strongly suggest a cortical myoclonus, originating within the motor cortex and related to epileptiform mechanisms.</p>\",\"PeriodicalId\":19256,\"journal\":{\"name\":\"Neurology\",\"volume\":\"103 11\",\"pages\":\"e209994\"},\"PeriodicalIF\":7.7000,\"publicationDate\":\"2024-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neurology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1212/WNL.0000000000209994\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/5 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1212/WNL.0000000000209994","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/5 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
Multimodal Assessment of the Origin of Myoclonus in Lance-Adams Syndrome.
Background and objectives: Lance-Adams syndrome (LAS), or chronic posthypoxic myoclonus, is a long-term disabling neurologic disorder occurring in survivors of anoxia. The cortical or subcortical origin of this myoclonus is unclear. We aimed to identify the neuroanatomical origin of myoclonus in LAS.
Methods: We conducted a cross-sectional study and investigated patients diagnosed with LAS from the Department of Neurology of Pitié-Salpêtrière Hospital, using multimodal neurologic explorations: EEG with quantitative analyses, polygraphic EMG recording of myoclonus, coupled EEG-EMG analyses with jerk-locked back averaging, and 18fluorodeoxyglucose PET/CT imaging.
Results: All 18 patients had action multifocal or generalized myoclonus. Eleven patients also presented seizures, mainly generalized tonic-clonic seizures. For 8 patients, myoclonus decreased after seizures for a variable duration, from 1 day to 2 weeks. Epileptiform discharges were identified over the central median region (n = 14), with a maximal amplitude on the Cz (65 ± 20 µV, n = 12) and Fz (107 µV, n = 1) electrodes, and a significantly increased frequency during non-rapid eye movement sleep stages 1 (12 ± 8.5 events/minute, p = 0.004, n = 9) and 2 (11 ± 8.8 events/minute, p = 0.016, n = 7) compared with wake (5.5 ± 5.4 events/minute). The duration of the cortical and muscular events was significantly and positively correlated (ρ = 0.58, p < 0.001, n = 9). Action myoclonic jerks with a duration of <50 ms were confirmed in all patients, with a fast-descending corticospinal way organization with a mean biceps brachii-first interossei dorsalis delay of 9.8 ± 1 ms (n = 8). A central cortical transient preceding the muscular jerks was identified (n = 14), with a mean latency of -31.9 ± 2.9 ms for the tibialis anterior muscle (n = 7). A regional metabolism decrease was observed in the precentral cortex, supplementary motor area, paracentral lobule (n = 6), and postcentral cortex and precuneus (n = 5). This metabolism decrease was bilateral in the precentral cortex for 83% of the patients and in the postcentral cortex for 100%. Hypometabolism in the precentral, supplementary motor, and postcentral areas was confirmed with a voxelwise analysis (p < 10-3, n = 6).
Discussion: Our findings, based on a large cohort of patients with LAS, strongly suggest a cortical myoclonus, originating within the motor cortex and related to epileptiform mechanisms.
期刊介绍:
Neurology, the official journal of the American Academy of Neurology, aspires to be the premier peer-reviewed journal for clinical neurology research. Its mission is to publish exceptional peer-reviewed original research articles, editorials, and reviews to improve patient care, education, clinical research, and professionalism in neurology.
As the leading clinical neurology journal worldwide, Neurology targets physicians specializing in nervous system diseases and conditions. It aims to advance the field by presenting new basic and clinical research that influences neurological practice. The journal is a leading source of cutting-edge, peer-reviewed information for the neurology community worldwide. Editorial content includes Research, Clinical/Scientific Notes, Views, Historical Neurology, NeuroImages, Humanities, Letters, and position papers from the American Academy of Neurology. The online version is considered the definitive version, encompassing all available content.
Neurology is indexed in prestigious databases such as MEDLINE/PubMed, Embase, Scopus, Biological Abstracts®, PsycINFO®, Current Contents®, Web of Science®, CrossRef, and Google Scholar.