Janaka S. S. Liyanage, Jane S. Hankins, Jeremie H. Estepp, Deokumar Srivastava, Sara R. Rashkin, Clifford Takemoto, Yun Li, Yuehua Cui, Motomi Mori, Mitchell J. Weiss, Guolian Kang
{"title":"针对计数型结果的新型单样本孟德尔随机化方法,对相关和不相关的多向效应具有鲁棒性。","authors":"Janaka S. S. Liyanage, Jane S. Hankins, Jeremie H. Estepp, Deokumar Srivastava, Sara R. Rashkin, Clifford Takemoto, Yun Li, Yuehua Cui, Motomi Mori, Mitchell J. Weiss, Guolian Kang","doi":"10.1002/gepi.22602","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>We propose two novel one-sample Mendelian randomization (MR) approaches to causal inference from count-type health outcomes, tailored to both equidispersion and overdispersion conditions. Selecting valid single-nucleotide polymorphisms (SNPs) as instrumental variables (IVs) poses a key challenge for MR approaches, as it requires meeting the necessary IV assumptions. To bolster the proposed approaches by addressing violations of IV assumptions, we incorporate a process for removing invalid SNPs that violate the assumptions. In simulations, our proposed approaches demonstrate robustness to the violations, delivering valid estimates, and interpretable type-I errors and statistical power. This increases the practical applicability of the models. We applied the proposed approaches to evaluate the causal effect of fetal hemoglobin (HbF) on the vaso-occlusive crisis and acute chest syndrome (ACS) events in patients with sickle cell disease (SCD) and revealed the causal relation between HbF and ACS events in these patients. We also developed a user-friendly Shiny web application to facilitate researchers' exploration of causal relations.</p>\n </div>","PeriodicalId":12710,"journal":{"name":"Genetic Epidemiology","volume":"49 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Novel One-Sample Mendelian Randomization Approach for Count-Type Outcomes That Is Robust to Correlated and Uncorrelated Pleiotropic Effects\",\"authors\":\"Janaka S. S. Liyanage, Jane S. Hankins, Jeremie H. Estepp, Deokumar Srivastava, Sara R. Rashkin, Clifford Takemoto, Yun Li, Yuehua Cui, Motomi Mori, Mitchell J. Weiss, Guolian Kang\",\"doi\":\"10.1002/gepi.22602\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>We propose two novel one-sample Mendelian randomization (MR) approaches to causal inference from count-type health outcomes, tailored to both equidispersion and overdispersion conditions. Selecting valid single-nucleotide polymorphisms (SNPs) as instrumental variables (IVs) poses a key challenge for MR approaches, as it requires meeting the necessary IV assumptions. To bolster the proposed approaches by addressing violations of IV assumptions, we incorporate a process for removing invalid SNPs that violate the assumptions. In simulations, our proposed approaches demonstrate robustness to the violations, delivering valid estimates, and interpretable type-I errors and statistical power. This increases the practical applicability of the models. We applied the proposed approaches to evaluate the causal effect of fetal hemoglobin (HbF) on the vaso-occlusive crisis and acute chest syndrome (ACS) events in patients with sickle cell disease (SCD) and revealed the causal relation between HbF and ACS events in these patients. We also developed a user-friendly Shiny web application to facilitate researchers' exploration of causal relations.</p>\\n </div>\",\"PeriodicalId\":12710,\"journal\":{\"name\":\"Genetic Epidemiology\",\"volume\":\"49 1\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genetic Epidemiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/gepi.22602\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genetic Epidemiology","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/gepi.22602","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
摘要
我们提出了两种新颖的单样本孟德尔随机化(MR)方法,用于从计数型健康结果中进行因果推断,分别适用于等离散和超离散条件。选择有效的单核苷酸多态性(SNPs)作为工具变量(IVs)是 MR 方法面临的主要挑战,因为它需要满足必要的 IV 假设。为了通过解决违反 IV 假设的问题来支持所提出的方法,我们采用了一种方法来剔除违反假设的无效 SNP。在模拟实验中,我们提出的方法证明了对违反假设的稳健性,提供了有效的估计值,以及可解释的 I 型误差和统计功率。这提高了模型的实际适用性。我们应用所提出的方法评估了胎儿血红蛋白(HbF)对镰状细胞病(SCD)患者血管闭塞危象和急性胸部综合征(ACS)事件的因果效应,并揭示了 HbF 与这些患者 ACS 事件之间的因果关系。我们还开发了一个用户友好型 Shiny 网络应用程序,以方便研究人员探索因果关系。
A Novel One-Sample Mendelian Randomization Approach for Count-Type Outcomes That Is Robust to Correlated and Uncorrelated Pleiotropic Effects
We propose two novel one-sample Mendelian randomization (MR) approaches to causal inference from count-type health outcomes, tailored to both equidispersion and overdispersion conditions. Selecting valid single-nucleotide polymorphisms (SNPs) as instrumental variables (IVs) poses a key challenge for MR approaches, as it requires meeting the necessary IV assumptions. To bolster the proposed approaches by addressing violations of IV assumptions, we incorporate a process for removing invalid SNPs that violate the assumptions. In simulations, our proposed approaches demonstrate robustness to the violations, delivering valid estimates, and interpretable type-I errors and statistical power. This increases the practical applicability of the models. We applied the proposed approaches to evaluate the causal effect of fetal hemoglobin (HbF) on the vaso-occlusive crisis and acute chest syndrome (ACS) events in patients with sickle cell disease (SCD) and revealed the causal relation between HbF and ACS events in these patients. We also developed a user-friendly Shiny web application to facilitate researchers' exploration of causal relations.
期刊介绍:
Genetic Epidemiology is a peer-reviewed journal for discussion of research on the genetic causes of the distribution of human traits in families and populations. Emphasis is placed on the relative contribution of genetic and environmental factors to human disease as revealed by genetic, epidemiological, and biologic investigations.
Genetic Epidemiology primarily publishes papers in statistical genetics, a research field that is primarily concerned with development of statistical, bioinformatical, and computational models for analyzing genetic data. Incorporation of underlying biology and population genetics into conceptual models is favored. The Journal seeks original articles comprising either applied research or innovative statistical, mathematical, computational, or genomic methodologies that advance studies in genetic epidemiology. Other types of reports are encouraged, such as letters to the editor, topic reviews, and perspectives from other fields of research that will likely enrich the field of genetic epidemiology.