Laura A Rolfs, Elizabeth J Falat, Jennifer H Gutzman
{"title":"myh9b 是一个重要的非肌球蛋白 II 编码基因,在斑马鱼的发育过程中,它与 myh9a 和 myh10 在补偿和冗余途径中相互作用。","authors":"Laura A Rolfs, Elizabeth J Falat, Jennifer H Gutzman","doi":"10.1093/g3journal/jkae260","DOIUrl":null,"url":null,"abstract":"<p><p>Non-muscle myosin (NMII) motor proteins have diverse developmental functions due to their roles in cell shape changes, cell migration, and cell adhesion. Zebrafish are an ideal vertebrate model system to study the NMII encoding myh genes and proteins due to high sequence homology, established gene editing tools, and rapid ex utero development. In humans, mutations in the NMII encoding MYH genes can lead to abnormal developmental processes and disease. This study utilized zebrafish myh9a, myh9b, and myh10 null mutants to examine potential genetic interactions and roles for each gene in development. It was determined that the myh9b gene is the most critical NMII encoding gene, as myh9b mutants develop pericardial edema and have a partially penetrant lethal phenotype, which was not observed in the other myh mutants. This study also established that genetic interactions occur between the zebrafish myh9a, myh9b, and myh10 genes where myh9b is required for the expression of both myh9a and myh10, and myh10 is required for the expression of myh9b. Additionally, protein analyses suggested that enhanced NMII protein stability in some mutant backgrounds may play a role in compensation. Finally, double mutant studies revealed different and more severe phenotypes at earlier timepoints than single mutants, suggesting roles for tissue specific genetic redundancy, and in some genotypes, haploinsufficiency. These mutants are the first in vivo models allowing for the study of complete loss of the NMIIA and NMIIB proteins, establishing them as valuable tools to elucidate the role of NMII encoding myh genes in development and disease.</p>","PeriodicalId":12468,"journal":{"name":"G3: Genes|Genomes|Genetics","volume":" ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"myh9b is a critical non-muscle myosin II encoding gene that interacts with myh9a and myh10 during zebrafish development in both compensatory and redundant pathways.\",\"authors\":\"Laura A Rolfs, Elizabeth J Falat, Jennifer H Gutzman\",\"doi\":\"10.1093/g3journal/jkae260\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Non-muscle myosin (NMII) motor proteins have diverse developmental functions due to their roles in cell shape changes, cell migration, and cell adhesion. Zebrafish are an ideal vertebrate model system to study the NMII encoding myh genes and proteins due to high sequence homology, established gene editing tools, and rapid ex utero development. In humans, mutations in the NMII encoding MYH genes can lead to abnormal developmental processes and disease. This study utilized zebrafish myh9a, myh9b, and myh10 null mutants to examine potential genetic interactions and roles for each gene in development. It was determined that the myh9b gene is the most critical NMII encoding gene, as myh9b mutants develop pericardial edema and have a partially penetrant lethal phenotype, which was not observed in the other myh mutants. This study also established that genetic interactions occur between the zebrafish myh9a, myh9b, and myh10 genes where myh9b is required for the expression of both myh9a and myh10, and myh10 is required for the expression of myh9b. Additionally, protein analyses suggested that enhanced NMII protein stability in some mutant backgrounds may play a role in compensation. Finally, double mutant studies revealed different and more severe phenotypes at earlier timepoints than single mutants, suggesting roles for tissue specific genetic redundancy, and in some genotypes, haploinsufficiency. These mutants are the first in vivo models allowing for the study of complete loss of the NMIIA and NMIIB proteins, establishing them as valuable tools to elucidate the role of NMII encoding myh genes in development and disease.</p>\",\"PeriodicalId\":12468,\"journal\":{\"name\":\"G3: Genes|Genomes|Genetics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"G3: Genes|Genomes|Genetics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/g3journal/jkae260\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"G3: Genes|Genomes|Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/g3journal/jkae260","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
myh9b is a critical non-muscle myosin II encoding gene that interacts with myh9a and myh10 during zebrafish development in both compensatory and redundant pathways.
Non-muscle myosin (NMII) motor proteins have diverse developmental functions due to their roles in cell shape changes, cell migration, and cell adhesion. Zebrafish are an ideal vertebrate model system to study the NMII encoding myh genes and proteins due to high sequence homology, established gene editing tools, and rapid ex utero development. In humans, mutations in the NMII encoding MYH genes can lead to abnormal developmental processes and disease. This study utilized zebrafish myh9a, myh9b, and myh10 null mutants to examine potential genetic interactions and roles for each gene in development. It was determined that the myh9b gene is the most critical NMII encoding gene, as myh9b mutants develop pericardial edema and have a partially penetrant lethal phenotype, which was not observed in the other myh mutants. This study also established that genetic interactions occur between the zebrafish myh9a, myh9b, and myh10 genes where myh9b is required for the expression of both myh9a and myh10, and myh10 is required for the expression of myh9b. Additionally, protein analyses suggested that enhanced NMII protein stability in some mutant backgrounds may play a role in compensation. Finally, double mutant studies revealed different and more severe phenotypes at earlier timepoints than single mutants, suggesting roles for tissue specific genetic redundancy, and in some genotypes, haploinsufficiency. These mutants are the first in vivo models allowing for the study of complete loss of the NMIIA and NMIIB proteins, establishing them as valuable tools to elucidate the role of NMII encoding myh genes in development and disease.
期刊介绍:
G3: Genes, Genomes, Genetics provides a forum for the publication of high‐quality foundational research, particularly research that generates useful genetic and genomic information such as genome maps, single gene studies, genome‐wide association and QTL studies, as well as genome reports, mutant screens, and advances in methods and technology. The Editorial Board of G3 believes that rapid dissemination of these data is the necessary foundation for analysis that leads to mechanistic insights.
G3, published by the Genetics Society of America, meets the critical and growing need of the genetics community for rapid review and publication of important results in all areas of genetics. G3 offers the opportunity to publish the puzzling finding or to present unpublished results that may not have been submitted for review and publication due to a perceived lack of a potential high-impact finding. G3 has earned the DOAJ Seal, which is a mark of certification for open access journals, awarded by DOAJ to journals that achieve a high level of openness, adhere to Best Practice and high publishing standards.