Michael Bredol, Ivan Radev, Giulia Primavera, Thomas Lange, Adib Caidi, Volker Peinecke
{"title":"质子传导膜上碳离子膜层的电泳沉积。","authors":"Michael Bredol, Ivan Radev, Giulia Primavera, Thomas Lange, Adib Caidi, Volker Peinecke","doi":"10.1002/cphc.202400767","DOIUrl":null,"url":null,"abstract":"<p><p>Synthetic and natural carbons are widely used as carrier for electrodes in electrochemical applications. They need to have a controlled morphology in order to facilitate mass and charge transport, so the process of film formation is of uttermost importance. Here we show, how carbons (after proper preconditioning) can be codeposited with an ionomer by electrophoretic deposition, a method that does allow full control of deposition conditions during the process. In view of potential applications, we focus on the direct deposition on proton-conducting membranes. Ionomers and membranes applied are based on established per-fluorinated polyethylene with SO<sub>3</sub>H-terminated side chains (PFSA). Conditions for reproducible deposition are reported in terms of optimal charge on the carbon particles, field strength in the deposition cell and necessary deposition times for a given film thickness. Additionally, a horizontal cell arrangement is suggested to avoid gravitational effects.</p>","PeriodicalId":9819,"journal":{"name":"Chemphyschem","volume":" ","pages":"e202400767"},"PeriodicalIF":2.3000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electrophoretic Deposition of Carbon-Ionomer Layers on Proton Conducting Membranes.\",\"authors\":\"Michael Bredol, Ivan Radev, Giulia Primavera, Thomas Lange, Adib Caidi, Volker Peinecke\",\"doi\":\"10.1002/cphc.202400767\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Synthetic and natural carbons are widely used as carrier for electrodes in electrochemical applications. They need to have a controlled morphology in order to facilitate mass and charge transport, so the process of film formation is of uttermost importance. Here we show, how carbons (after proper preconditioning) can be codeposited with an ionomer by electrophoretic deposition, a method that does allow full control of deposition conditions during the process. In view of potential applications, we focus on the direct deposition on proton-conducting membranes. Ionomers and membranes applied are based on established per-fluorinated polyethylene with SO<sub>3</sub>H-terminated side chains (PFSA). Conditions for reproducible deposition are reported in terms of optimal charge on the carbon particles, field strength in the deposition cell and necessary deposition times for a given film thickness. Additionally, a horizontal cell arrangement is suggested to avoid gravitational effects.</p>\",\"PeriodicalId\":9819,\"journal\":{\"name\":\"Chemphyschem\",\"volume\":\" \",\"pages\":\"e202400767\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemphyschem\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/cphc.202400767\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemphyschem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cphc.202400767","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Electrophoretic Deposition of Carbon-Ionomer Layers on Proton Conducting Membranes.
Synthetic and natural carbons are widely used as carrier for electrodes in electrochemical applications. They need to have a controlled morphology in order to facilitate mass and charge transport, so the process of film formation is of uttermost importance. Here we show, how carbons (after proper preconditioning) can be codeposited with an ionomer by electrophoretic deposition, a method that does allow full control of deposition conditions during the process. In view of potential applications, we focus on the direct deposition on proton-conducting membranes. Ionomers and membranes applied are based on established per-fluorinated polyethylene with SO3H-terminated side chains (PFSA). Conditions for reproducible deposition are reported in terms of optimal charge on the carbon particles, field strength in the deposition cell and necessary deposition times for a given film thickness. Additionally, a horizontal cell arrangement is suggested to avoid gravitational effects.
期刊介绍:
ChemPhysChem is one of the leading chemistry/physics interdisciplinary journals (ISI Impact Factor 2018: 3.077) for physical chemistry and chemical physics. It is published on behalf of Chemistry Europe, an association of 16 European chemical societies.
ChemPhysChem is an international source for important primary and critical secondary information across the whole field of physical chemistry and chemical physics. It integrates this wide and flourishing field ranging from Solid State and Soft-Matter Research, Electro- and Photochemistry, Femtochemistry and Nanotechnology, Complex Systems, Single-Molecule Research, Clusters and Colloids, Catalysis and Surface Science, Biophysics and Physical Biochemistry, Atmospheric and Environmental Chemistry, and many more topics. ChemPhysChem is peer-reviewed.