建立人体三维体外肝骨模型,作为潜在的药物毒性筛选系统。

IF 4.8 2区 医学 Q1 TOXICOLOGY
Guanqiao Chen, Yuxuan Xin, Mohammad Majd Hammour, Bianca Braun, Sabrina Ehnert, Fabian Springer, Massoud Vosough, Maximilian M Menger, Ashok Kumar, Andreas K Nüssler, Romina H Aspera-Werz
{"title":"建立人体三维体外肝骨模型,作为潜在的药物毒性筛选系统。","authors":"Guanqiao Chen, Yuxuan Xin, Mohammad Majd Hammour, Bianca Braun, Sabrina Ehnert, Fabian Springer, Massoud Vosough, Maximilian M Menger, Ashok Kumar, Andreas K Nüssler, Romina H Aspera-Werz","doi":"10.1007/s00204-024-03899-9","DOIUrl":null,"url":null,"abstract":"<p><p>Drug toxicity is an important cause of chronic liver damage, which in the long term can lead to impaired bone homeostasis through an imbalance in the liver-bone axis. For instance, non-steroidal anti-inflammatory drugs (e.g., diclofenac), which are commonly used to control pain during orthopaedic interventions, are known to reduce bone quality and are the most prevalent causes of drug-induced liver damage. Therefore, we used human cell lines to produce a stable, reproducible, and reliable in vitro liver-bone co-culture model, which mimics the impaired bone homeostasis seen after diclofenac intake in vivo. To provide the best cell culture conditions for the two systems, we tested the effects of supplements contained in liver and bone cell culture medium on liver and bone cell lines, respectively. Additionally, different ratios of culture medium combinations on bone cell scaffolds and liver spheroids' viability and function were also analysed. Then, liver spheroids and bone scaffolds were daily exposed to 3-6 µM diclofenac alone or in co-culture to compare and evaluate its effect on the liver and bone system. Our results demonstrated that a 50:50 liver:bone medium combination maintains the function of liver spheroids and bone scaffolds for up to 21 days. Osteoclast-like cell activity was significantly upregulated after chronic exposure to diclofenac only in bone scaffolds co-cultured with liver spheroids. Consequently, the mineral content and stiffness of bone scaffolds treated with diclofenac in co-culture with liver spheroids were significantly reduced. Interestingly, our results show that the increase in osteoclastic activity in the system is not related to the main product of diclofenac metabolism. However, osteoclast activation correlated with the increase in oxidative stress and inflammation associated with chronic diclofenac exposure. In summary, we established a long-term stable liver-bone system that represents the interaction between the two organs, meanwhile, it is also an outstanding model for studying the toxicity of drugs on bone homeostasis.</p>","PeriodicalId":8329,"journal":{"name":"Archives of Toxicology","volume":" ","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Establishment of a human 3D in vitro liver-bone model as a potential system for drug toxicity screening.\",\"authors\":\"Guanqiao Chen, Yuxuan Xin, Mohammad Majd Hammour, Bianca Braun, Sabrina Ehnert, Fabian Springer, Massoud Vosough, Maximilian M Menger, Ashok Kumar, Andreas K Nüssler, Romina H Aspera-Werz\",\"doi\":\"10.1007/s00204-024-03899-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Drug toxicity is an important cause of chronic liver damage, which in the long term can lead to impaired bone homeostasis through an imbalance in the liver-bone axis. For instance, non-steroidal anti-inflammatory drugs (e.g., diclofenac), which are commonly used to control pain during orthopaedic interventions, are known to reduce bone quality and are the most prevalent causes of drug-induced liver damage. Therefore, we used human cell lines to produce a stable, reproducible, and reliable in vitro liver-bone co-culture model, which mimics the impaired bone homeostasis seen after diclofenac intake in vivo. To provide the best cell culture conditions for the two systems, we tested the effects of supplements contained in liver and bone cell culture medium on liver and bone cell lines, respectively. Additionally, different ratios of culture medium combinations on bone cell scaffolds and liver spheroids' viability and function were also analysed. Then, liver spheroids and bone scaffolds were daily exposed to 3-6 µM diclofenac alone or in co-culture to compare and evaluate its effect on the liver and bone system. Our results demonstrated that a 50:50 liver:bone medium combination maintains the function of liver spheroids and bone scaffolds for up to 21 days. Osteoclast-like cell activity was significantly upregulated after chronic exposure to diclofenac only in bone scaffolds co-cultured with liver spheroids. Consequently, the mineral content and stiffness of bone scaffolds treated with diclofenac in co-culture with liver spheroids were significantly reduced. Interestingly, our results show that the increase in osteoclastic activity in the system is not related to the main product of diclofenac metabolism. However, osteoclast activation correlated with the increase in oxidative stress and inflammation associated with chronic diclofenac exposure. In summary, we established a long-term stable liver-bone system that represents the interaction between the two organs, meanwhile, it is also an outstanding model for studying the toxicity of drugs on bone homeostasis.</p>\",\"PeriodicalId\":8329,\"journal\":{\"name\":\"Archives of Toxicology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archives of Toxicology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s00204-024-03899-9\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"TOXICOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Toxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00204-024-03899-9","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TOXICOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

药物毒性是慢性肝损伤的一个重要原因,长期可通过肝-骨轴的失衡导致骨平衡受损。例如,非甾体抗炎药(如双氯芬酸)常用于骨科介入治疗过程中控制疼痛,已知会降低骨质量,是药物引起肝损伤的最常见原因。因此,我们利用人体细胞系建立了一个稳定、可重复、可靠的体外肝骨共培养模型,该模型模拟了体内摄入双氯芬酸后受损的骨稳态。为了给这两个系统提供最佳的细胞培养条件,我们分别测试了肝细胞和骨细胞培养基中含有的补充剂对肝细胞和骨细胞系的影响。此外,我们还分析了不同比例的培养基组合对骨细胞支架和肝球的活力和功能的影响。然后,每天将肝球和骨支架单独或共培养暴露于 3-6 µM 的双氯芬酸,以比较和评估其对肝脏和骨骼系统的影响。我们的结果表明,50:50 的肝:骨培养基组合可维持肝球和骨支架的功能长达 21 天。长期暴露于双氯芬酸后,只有在与肝脏球形体共同培养的骨支架中,破骨细胞样细胞的活性才会显著上调。因此,与肝脏球形体共同培养的骨支架经双氯芬酸处理后,其矿物质含量和硬度均显著降低。有趣的是,我们的研究结果表明,该系统中破骨细胞活性的增加与双氯芬酸代谢的主要产物无关。然而,破骨细胞的活化与慢性双氯芬酸暴露引起的氧化应激和炎症的增加有关。总之,我们建立了一个长期稳定的肝-骨系统,它代表了两个器官之间的相互作用,同时也是研究药物对骨稳态毒性的一个杰出模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Establishment of a human 3D in vitro liver-bone model as a potential system for drug toxicity screening.

Drug toxicity is an important cause of chronic liver damage, which in the long term can lead to impaired bone homeostasis through an imbalance in the liver-bone axis. For instance, non-steroidal anti-inflammatory drugs (e.g., diclofenac), which are commonly used to control pain during orthopaedic interventions, are known to reduce bone quality and are the most prevalent causes of drug-induced liver damage. Therefore, we used human cell lines to produce a stable, reproducible, and reliable in vitro liver-bone co-culture model, which mimics the impaired bone homeostasis seen after diclofenac intake in vivo. To provide the best cell culture conditions for the two systems, we tested the effects of supplements contained in liver and bone cell culture medium on liver and bone cell lines, respectively. Additionally, different ratios of culture medium combinations on bone cell scaffolds and liver spheroids' viability and function were also analysed. Then, liver spheroids and bone scaffolds were daily exposed to 3-6 µM diclofenac alone or in co-culture to compare and evaluate its effect on the liver and bone system. Our results demonstrated that a 50:50 liver:bone medium combination maintains the function of liver spheroids and bone scaffolds for up to 21 days. Osteoclast-like cell activity was significantly upregulated after chronic exposure to diclofenac only in bone scaffolds co-cultured with liver spheroids. Consequently, the mineral content and stiffness of bone scaffolds treated with diclofenac in co-culture with liver spheroids were significantly reduced. Interestingly, our results show that the increase in osteoclastic activity in the system is not related to the main product of diclofenac metabolism. However, osteoclast activation correlated with the increase in oxidative stress and inflammation associated with chronic diclofenac exposure. In summary, we established a long-term stable liver-bone system that represents the interaction between the two organs, meanwhile, it is also an outstanding model for studying the toxicity of drugs on bone homeostasis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Archives of Toxicology
Archives of Toxicology 医学-毒理学
CiteScore
11.60
自引率
4.90%
发文量
218
审稿时长
1.5 months
期刊介绍: Archives of Toxicology provides up-to-date information on the latest advances in toxicology. The journal places particular emphasis on studies relating to defined effects of chemicals and mechanisms of toxicity, including toxic activities at the molecular level, in humans and experimental animals. Coverage includes new insights into analysis and toxicokinetics and into forensic toxicology. Review articles of general interest to toxicologists are an additional important feature of the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信