光、开关、作用!自适应自组装系统中几何光异构化的影响。

IF 14.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Journal of the American Chemical Society Pub Date : 2024-11-20 Epub Date: 2024-11-05 DOI:10.1021/jacs.4c11206
Marco Ovalle, Charlotte N Stindt, Ben L Feringa
{"title":"光、开关、作用!自适应自组装系统中几何光异构化的影响。","authors":"Marco Ovalle, Charlotte N Stindt, Ben L Feringa","doi":"10.1021/jacs.4c11206","DOIUrl":null,"url":null,"abstract":"<p><p>The ubiquitous ability of natural dynamic nanostructures to adapt to environmental changes is a highly desirable property for chemical systems, particularly in the development of complex matter, molecular machines, and life-like materials. Designing such systems is challenging due to the generation of complex mixtures with responses that are difficult to predict, characterize, and diversify. Here, we navigate between self-assembled architectures using light by operating an intrinsic photoswitchable building block that governs the state of the system. When complementary units are present, the photoswitch determines the predominant architecture, reversibly adapting between the cage and macrocycles, including (otherwise inaccessible) higher-energy assemblies. Our study showcases this concept with seven different transformations, offering an unprecedented degree of control, diversification, and adaptation by self-selecting complementary units. These findings could enable applications of on-demand dissipative macrocycles based on dynamic bonds. We also envision different transient nanostructures, e.g., reticular and polymeric materials, being explored by fine-tuning the nature of the complementary unit.</p>","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":" ","pages":"31892-31900"},"PeriodicalIF":14.4000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11583216/pdf/","citationCount":"0","resultStr":"{\"title\":\"Light, Switch, Action! The Influence of Geometrical Photoisomerization in an Adaptive Self-Assembled System.\",\"authors\":\"Marco Ovalle, Charlotte N Stindt, Ben L Feringa\",\"doi\":\"10.1021/jacs.4c11206\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The ubiquitous ability of natural dynamic nanostructures to adapt to environmental changes is a highly desirable property for chemical systems, particularly in the development of complex matter, molecular machines, and life-like materials. Designing such systems is challenging due to the generation of complex mixtures with responses that are difficult to predict, characterize, and diversify. Here, we navigate between self-assembled architectures using light by operating an intrinsic photoswitchable building block that governs the state of the system. When complementary units are present, the photoswitch determines the predominant architecture, reversibly adapting between the cage and macrocycles, including (otherwise inaccessible) higher-energy assemblies. Our study showcases this concept with seven different transformations, offering an unprecedented degree of control, diversification, and adaptation by self-selecting complementary units. These findings could enable applications of on-demand dissipative macrocycles based on dynamic bonds. We also envision different transient nanostructures, e.g., reticular and polymeric materials, being explored by fine-tuning the nature of the complementary unit.</p>\",\"PeriodicalId\":49,\"journal\":{\"name\":\"Journal of the American Chemical Society\",\"volume\":\" \",\"pages\":\"31892-31900\"},\"PeriodicalIF\":14.4000,\"publicationDate\":\"2024-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11583216/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the American Chemical Society\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/jacs.4c11206\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/5 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jacs.4c11206","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/5 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

天然动态纳米结构适应环境变化的能力无处不在,这是化学系统非常理想的特性,尤其是在开发复杂物质、分子机器和生命材料方面。由于复杂混合物的反应难以预测、表征和多样化,设计此类系统具有挑战性。在这里,我们利用光在自组装架构之间进行导航,方法是操作一个内在的光开关构件,该构件控制着系统的状态。当存在互补单元时,光开关会决定主要结构,在笼状结构和大循环结构之间进行可逆调节,包括(否则无法进入的)高能组装。我们的研究通过七种不同的转换展示了这一概念,通过自选互补单元提供了前所未有的控制、多样化和适应性。这些发现可以使基于动态键的按需耗散大循环得到应用。我们还设想通过微调互补单元的性质来探索不同的瞬态纳米结构,如网状和聚合材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Light, Switch, Action! The Influence of Geometrical Photoisomerization in an Adaptive Self-Assembled System.

Light, Switch, Action! The Influence of Geometrical Photoisomerization in an Adaptive Self-Assembled System.

The ubiquitous ability of natural dynamic nanostructures to adapt to environmental changes is a highly desirable property for chemical systems, particularly in the development of complex matter, molecular machines, and life-like materials. Designing such systems is challenging due to the generation of complex mixtures with responses that are difficult to predict, characterize, and diversify. Here, we navigate between self-assembled architectures using light by operating an intrinsic photoswitchable building block that governs the state of the system. When complementary units are present, the photoswitch determines the predominant architecture, reversibly adapting between the cage and macrocycles, including (otherwise inaccessible) higher-energy assemblies. Our study showcases this concept with seven different transformations, offering an unprecedented degree of control, diversification, and adaptation by self-selecting complementary units. These findings could enable applications of on-demand dissipative macrocycles based on dynamic bonds. We also envision different transient nanostructures, e.g., reticular and polymeric materials, being explored by fine-tuning the nature of the complementary unit.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
24.40
自引率
6.00%
发文量
2398
审稿时长
1.6 months
期刊介绍: The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信