电荷封闭单原子催化剂通过电子转移介导污染物活化高碘酸盐生成 1O2

IF 3.784 3区 化学 Q1 Chemistry
Qianqian Tang, Bangxiang Wu, Xiaowen Huang, Wei Ren, Lingling Liu, Lei Tian, Ying Chen, Long-Shuai Zhang, Qing Sun, Zhibing Kang, Tianyi Ma, Jian-Ping Zou
{"title":"电荷封闭单原子催化剂通过电子转移介导污染物活化高碘酸盐生成 1O2","authors":"Qianqian Tang, Bangxiang Wu, Xiaowen Huang, Wei Ren, Lingling Liu, Lei Tian, Ying Chen, Long-Shuai Zhang, Qing Sun, Zhibing Kang, Tianyi Ma, Jian-Ping Zou","doi":"10.1038/s41467-024-53941-8","DOIUrl":null,"url":null,"abstract":"<p>The electron transfer process (ETP) is able to avoid the redox cycling of catalysts by capturing electrons from contaminants directly. However, the ETP usually leads to the formation of oligomers and the reduction of oxidants to anions. Herein, the charge-confined Fe single-atom catalyst (Fe/SCN) with Fe-N<sub>3</sub>S<sub>1</sub> configuration was designed to achieve ETP-mediated contaminant activation of the oxidant by limiting the number of electrons gained by the oxidant to generate <sup>1</sup>O<sub>2</sub>. The Fe/SCN-activate periodate (PI) system shows excellent contaminant degradation performance due to the combination of ETP and <sup>1</sup>O<sub>2</sub>. Experiments and DFT calculations show that the Fe/SCN-PI* complex with strong oxidizing ability triggers the ETP, while the charge-confined effect allows the single-electronic activation of PI to generate <sup>1</sup>O<sub>2</sub>. In the Fe/SCN + PI system, the 100% selectivity dechlorination of ETP and the ring-opening of <sup>1</sup>O<sub>2</sub> avoid the generation of oligomers and realize the transformation of large-molecule contaminants into small-molecule biodegradable products. Furthermore, the Fe/SCN + PI system shows excellent anti-interference ability and application potential. This work pioneers the generation of active species using ETP’s electron to activate oxidants, which provides a perspective on the design of single-atom catalysts via the charge-confined effect.</p>","PeriodicalId":14,"journal":{"name":"ACS Combinatorial Science","volume":null,"pages":null},"PeriodicalIF":3.7840,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electron transfer mediated activation of periodate by contaminants to generate 1O2 by charge-confined single-atom catalyst\",\"authors\":\"Qianqian Tang, Bangxiang Wu, Xiaowen Huang, Wei Ren, Lingling Liu, Lei Tian, Ying Chen, Long-Shuai Zhang, Qing Sun, Zhibing Kang, Tianyi Ma, Jian-Ping Zou\",\"doi\":\"10.1038/s41467-024-53941-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The electron transfer process (ETP) is able to avoid the redox cycling of catalysts by capturing electrons from contaminants directly. However, the ETP usually leads to the formation of oligomers and the reduction of oxidants to anions. Herein, the charge-confined Fe single-atom catalyst (Fe/SCN) with Fe-N<sub>3</sub>S<sub>1</sub> configuration was designed to achieve ETP-mediated contaminant activation of the oxidant by limiting the number of electrons gained by the oxidant to generate <sup>1</sup>O<sub>2</sub>. The Fe/SCN-activate periodate (PI) system shows excellent contaminant degradation performance due to the combination of ETP and <sup>1</sup>O<sub>2</sub>. Experiments and DFT calculations show that the Fe/SCN-PI* complex with strong oxidizing ability triggers the ETP, while the charge-confined effect allows the single-electronic activation of PI to generate <sup>1</sup>O<sub>2</sub>. In the Fe/SCN + PI system, the 100% selectivity dechlorination of ETP and the ring-opening of <sup>1</sup>O<sub>2</sub> avoid the generation of oligomers and realize the transformation of large-molecule contaminants into small-molecule biodegradable products. Furthermore, the Fe/SCN + PI system shows excellent anti-interference ability and application potential. This work pioneers the generation of active species using ETP’s electron to activate oxidants, which provides a perspective on the design of single-atom catalysts via the charge-confined effect.</p>\",\"PeriodicalId\":14,\"journal\":{\"name\":\"ACS Combinatorial Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.7840,\"publicationDate\":\"2024-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Combinatorial Science\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-024-53941-8\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Chemistry\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Combinatorial Science","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-024-53941-8","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Chemistry","Score":null,"Total":0}
引用次数: 0

摘要

电子转移过程(ETP)能够直接从污染物中捕获电子,从而避免催化剂的氧化还原循环。然而,电子转移过程通常会形成低聚物,并将氧化剂还原成阴离子。在此,我们设计了具有 Fe-N3S1 构型的电荷封闭铁单原子催化剂(Fe/SCN),通过限制氧化剂生成 1O2 时获得的电子数,实现 ETP 介导的污染物活化氧化剂。由于 ETP 和 1O2 的结合,Fe/SCN-活化高碘酸盐(PI)系统显示出卓越的污染物降解性能。实验和 DFT 计算表明,Fe/SCN-PI* 复合物具有很强的氧化能力,可触发 ETP,而电荷约束效应可使 PI 单电子活化生成 1O2。在 Fe/SCN + PI 系统中,ETP 的 100% 选择性脱氯和 1O2 的开环避免了低聚物的生成,实现了大分子污染物向小分子可生物降解产品的转化。此外,Fe/SCN + PI 系统还表现出卓越的抗干扰能力和应用潜力。这项工作开创了利用 ETP 电子激活氧化剂生成活性物种的先河,为通过电荷约束效应设计单原子催化剂提供了一个视角。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Electron transfer mediated activation of periodate by contaminants to generate 1O2 by charge-confined single-atom catalyst

Electron transfer mediated activation of periodate by contaminants to generate 1O2 by charge-confined single-atom catalyst

The electron transfer process (ETP) is able to avoid the redox cycling of catalysts by capturing electrons from contaminants directly. However, the ETP usually leads to the formation of oligomers and the reduction of oxidants to anions. Herein, the charge-confined Fe single-atom catalyst (Fe/SCN) with Fe-N3S1 configuration was designed to achieve ETP-mediated contaminant activation of the oxidant by limiting the number of electrons gained by the oxidant to generate 1O2. The Fe/SCN-activate periodate (PI) system shows excellent contaminant degradation performance due to the combination of ETP and 1O2. Experiments and DFT calculations show that the Fe/SCN-PI* complex with strong oxidizing ability triggers the ETP, while the charge-confined effect allows the single-electronic activation of PI to generate 1O2. In the Fe/SCN + PI system, the 100% selectivity dechlorination of ETP and the ring-opening of 1O2 avoid the generation of oligomers and realize the transformation of large-molecule contaminants into small-molecule biodegradable products. Furthermore, the Fe/SCN + PI system shows excellent anti-interference ability and application potential. This work pioneers the generation of active species using ETP’s electron to activate oxidants, which provides a perspective on the design of single-atom catalysts via the charge-confined effect.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Combinatorial Science
ACS Combinatorial Science CHEMISTRY, APPLIED-CHEMISTRY, MEDICINAL
自引率
0.00%
发文量
0
审稿时长
1 months
期刊介绍: The Journal of Combinatorial Chemistry has been relaunched as ACS Combinatorial Science under the leadership of new Editor-in-Chief M.G. Finn of The Scripps Research Institute. The journal features an expanded scope and will build upon the legacy of the Journal of Combinatorial Chemistry, a highly cited leader in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信