{"title":"光子石墨烯中的偏斜散射和棘轮效应","authors":"O. M. Bahrova, S. V. Koniakhin","doi":"10.1103/physrevb.110.205405","DOIUrl":null,"url":null,"abstract":"This paper is devoted to a comprehensive theoretical study of asymmetric (skew) scattering in photonic graphene, with the main focus on its realization with semiconductor microcavity exciton-polaritons. As an important consequence of the skew scattering, we prove the appearance of the ratchet effect in this system. Triangular defects in the form of missing micropillars in a regular honeycomb lattice are considered to be ones that break the spatial inversion symmetry, thus providing the possibility of the ratchet effect. By means of the numerical solution of the effective Schrödinger equation, we provide microscopical insight into the process of skew scattering and determine indicatrices, cross sections, and asymmetry parameters. In a system with multiple coherently oriented triangular defects, a macroscopic ratchet effect occurs as a unidirectional flux upon noiselike initial conditions. Our study broadens the concept of ratchet phenomena in the field of photonics and optics of exciton-polaritons.","PeriodicalId":20082,"journal":{"name":"Physical Review B","volume":"61 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Skew scattering and ratchet effect in photonic graphene\",\"authors\":\"O. M. Bahrova, S. V. Koniakhin\",\"doi\":\"10.1103/physrevb.110.205405\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper is devoted to a comprehensive theoretical study of asymmetric (skew) scattering in photonic graphene, with the main focus on its realization with semiconductor microcavity exciton-polaritons. As an important consequence of the skew scattering, we prove the appearance of the ratchet effect in this system. Triangular defects in the form of missing micropillars in a regular honeycomb lattice are considered to be ones that break the spatial inversion symmetry, thus providing the possibility of the ratchet effect. By means of the numerical solution of the effective Schrödinger equation, we provide microscopical insight into the process of skew scattering and determine indicatrices, cross sections, and asymmetry parameters. In a system with multiple coherently oriented triangular defects, a macroscopic ratchet effect occurs as a unidirectional flux upon noiselike initial conditions. Our study broadens the concept of ratchet phenomena in the field of photonics and optics of exciton-polaritons.\",\"PeriodicalId\":20082,\"journal\":{\"name\":\"Physical Review B\",\"volume\":\"61 1\",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review B\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevb.110.205405\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review B","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevb.110.205405","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
Skew scattering and ratchet effect in photonic graphene
This paper is devoted to a comprehensive theoretical study of asymmetric (skew) scattering in photonic graphene, with the main focus on its realization with semiconductor microcavity exciton-polaritons. As an important consequence of the skew scattering, we prove the appearance of the ratchet effect in this system. Triangular defects in the form of missing micropillars in a regular honeycomb lattice are considered to be ones that break the spatial inversion symmetry, thus providing the possibility of the ratchet effect. By means of the numerical solution of the effective Schrödinger equation, we provide microscopical insight into the process of skew scattering and determine indicatrices, cross sections, and asymmetry parameters. In a system with multiple coherently oriented triangular defects, a macroscopic ratchet effect occurs as a unidirectional flux upon noiselike initial conditions. Our study broadens the concept of ratchet phenomena in the field of photonics and optics of exciton-polaritons.
期刊介绍:
Physical Review B (PRB) is the world’s largest dedicated physics journal, publishing approximately 100 new, high-quality papers each week. The most highly cited journal in condensed matter physics, PRB provides outstanding depth and breadth of coverage, combined with unrivaled context and background for ongoing research by scientists worldwide.
PRB covers the full range of condensed matter, materials physics, and related subfields, including:
-Structure and phase transitions
-Ferroelectrics and multiferroics
-Disordered systems and alloys
-Magnetism
-Superconductivity
-Electronic structure, photonics, and metamaterials
-Semiconductors and mesoscopic systems
-Surfaces, nanoscience, and two-dimensional materials
-Topological states of matter