长程纠缠量子多体态的 Petz 图复原

IF 3.7 2区 物理与天体物理 Q1 Physics and Astronomy
Yangrui Hu, Yijian Zou
{"title":"长程纠缠量子多体态的 Petz 图复原","authors":"Yangrui Hu, Yijian Zou","doi":"10.1103/physrevb.110.195107","DOIUrl":null,"url":null,"abstract":"Given a tripartite quantum state on <mjx-container ctxtmenu_counter=\"34\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"(5 0 1 2 3 4)\"><mjx-mrow data-semantic-children=\"0,1,2,3,4\" data-semantic-content=\"1,3\" data-semantic- data-semantic-owns=\"0 1 2 3 4\" data-semantic-role=\"sequence\" data-semantic-speech=\"upper A comma upper B comma upper C\" data-semantic-type=\"punctuated\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"5\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c>𝐴</mjx-c></mjx-mi><mjx-mo data-semantic- data-semantic-operator=\"punctuated\" data-semantic-parent=\"5\" data-semantic-role=\"comma\" data-semantic-type=\"punctuation\"><mjx-c>,</mjx-c></mjx-mo><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"5\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\" space=\"2\"><mjx-c>𝐵</mjx-c></mjx-mi><mjx-mo data-semantic- data-semantic-operator=\"punctuated\" data-semantic-parent=\"5\" data-semantic-role=\"comma\" data-semantic-type=\"punctuation\"><mjx-c>,</mjx-c></mjx-mo><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"5\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\" space=\"2\"><mjx-c>𝐶</mjx-c></mjx-mi></mjx-mrow></mjx-math></mjx-container> and the erasure channel on <mjx-container ctxtmenu_counter=\"35\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"0\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-role=\"latinletter\" data-semantic-speech=\"upper C\" data-semantic-type=\"identifier\"><mjx-c>𝐶</mjx-c></mjx-mi></mjx-math></mjx-container>, the rotated Petz map is a recovery channel that acts on <mjx-container ctxtmenu_counter=\"36\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"0\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-role=\"latinletter\" data-semantic-speech=\"upper B\" data-semantic-type=\"identifier\"><mjx-c>𝐵</mjx-c></mjx-mi></mjx-math></mjx-container> to recover the erased quantum information. The infidelity of the best recovery is upper bounded by the conditional mutual information (CMI). In this work, we study the infidelity of the rotated Petz map on several physically relevant long-range entangled quantum states. Specifically, we study three classes of quantum phases: (i) steady states of measurement-induced phase transitions, (ii) critical ground state under local measurements, and (iii) chiral states under local measurements. We find that the averaged infidelity of the Petz map recovery sharply distinguishes the three classes: (i) and (ii) are distinguished by the scaling of the infidelity with CMI and (iii) is characterized by an asymmetry of the fidelity with the rotation parameter. We also study Petz map recovery for topological order and find an operational interpretation of the topological entanglement entropy. Our result indicates that the recovery fidelity of the Petz map is a useful diagnostic of quantum phases of matter.","PeriodicalId":20082,"journal":{"name":"Physical Review B","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Petz map recovery for long-range entangled quantum many-body states\",\"authors\":\"Yangrui Hu, Yijian Zou\",\"doi\":\"10.1103/physrevb.110.195107\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Given a tripartite quantum state on <mjx-container ctxtmenu_counter=\\\"34\\\" ctxtmenu_oldtabindex=\\\"1\\\" jax=\\\"CHTML\\\" overflow=\\\"linebreak\\\" role=\\\"tree\\\" sre-explorer- style=\\\"font-size: 100.7%;\\\" tabindex=\\\"0\\\"><mjx-math data-semantic-structure=\\\"(5 0 1 2 3 4)\\\"><mjx-mrow data-semantic-children=\\\"0,1,2,3,4\\\" data-semantic-content=\\\"1,3\\\" data-semantic- data-semantic-owns=\\\"0 1 2 3 4\\\" data-semantic-role=\\\"sequence\\\" data-semantic-speech=\\\"upper A comma upper B comma upper C\\\" data-semantic-type=\\\"punctuated\\\"><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic- data-semantic-parent=\\\"5\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\"><mjx-c>𝐴</mjx-c></mjx-mi><mjx-mo data-semantic- data-semantic-operator=\\\"punctuated\\\" data-semantic-parent=\\\"5\\\" data-semantic-role=\\\"comma\\\" data-semantic-type=\\\"punctuation\\\"><mjx-c>,</mjx-c></mjx-mo><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic- data-semantic-parent=\\\"5\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\" space=\\\"2\\\"><mjx-c>𝐵</mjx-c></mjx-mi><mjx-mo data-semantic- data-semantic-operator=\\\"punctuated\\\" data-semantic-parent=\\\"5\\\" data-semantic-role=\\\"comma\\\" data-semantic-type=\\\"punctuation\\\"><mjx-c>,</mjx-c></mjx-mo><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic- data-semantic-parent=\\\"5\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\" space=\\\"2\\\"><mjx-c>𝐶</mjx-c></mjx-mi></mjx-mrow></mjx-math></mjx-container> and the erasure channel on <mjx-container ctxtmenu_counter=\\\"35\\\" ctxtmenu_oldtabindex=\\\"1\\\" jax=\\\"CHTML\\\" overflow=\\\"linebreak\\\" role=\\\"tree\\\" sre-explorer- style=\\\"font-size: 100.7%;\\\" tabindex=\\\"0\\\"><mjx-math data-semantic-structure=\\\"0\\\"><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic- data-semantic-role=\\\"latinletter\\\" data-semantic-speech=\\\"upper C\\\" data-semantic-type=\\\"identifier\\\"><mjx-c>𝐶</mjx-c></mjx-mi></mjx-math></mjx-container>, the rotated Petz map is a recovery channel that acts on <mjx-container ctxtmenu_counter=\\\"36\\\" ctxtmenu_oldtabindex=\\\"1\\\" jax=\\\"CHTML\\\" overflow=\\\"linebreak\\\" role=\\\"tree\\\" sre-explorer- style=\\\"font-size: 100.7%;\\\" tabindex=\\\"0\\\"><mjx-math data-semantic-structure=\\\"0\\\"><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic- data-semantic-role=\\\"latinletter\\\" data-semantic-speech=\\\"upper B\\\" data-semantic-type=\\\"identifier\\\"><mjx-c>𝐵</mjx-c></mjx-mi></mjx-math></mjx-container> to recover the erased quantum information. The infidelity of the best recovery is upper bounded by the conditional mutual information (CMI). In this work, we study the infidelity of the rotated Petz map on several physically relevant long-range entangled quantum states. Specifically, we study three classes of quantum phases: (i) steady states of measurement-induced phase transitions, (ii) critical ground state under local measurements, and (iii) chiral states under local measurements. We find that the averaged infidelity of the Petz map recovery sharply distinguishes the three classes: (i) and (ii) are distinguished by the scaling of the infidelity with CMI and (iii) is characterized by an asymmetry of the fidelity with the rotation parameter. We also study Petz map recovery for topological order and find an operational interpretation of the topological entanglement entropy. Our result indicates that the recovery fidelity of the Petz map is a useful diagnostic of quantum phases of matter.\",\"PeriodicalId\":20082,\"journal\":{\"name\":\"Physical Review B\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review B\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevb.110.195107\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review B","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevb.110.195107","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

摘要

给定𝐴,𝐵,𝐶上的三方量子态和𝐶上的擦除信道,旋转 Petz 映射是作用于𝐵的恢复信道,可以恢复被擦除的量子信息。最佳恢复的不保真度上限是条件互信息(CMI)。在这项工作中,我们研究了旋转 Petz 映射在几个物理相关的长程纠缠量子态上的不保真度。具体来说,我们研究了三类量子态:(i) 测量诱导相变的稳态,(ii) 局部测量下的临界基态,以及 (iii) 局部测量下的手性态。我们发现,Petz 图恢复的平均不保真度能明显区分这三类相:(i) 和 (ii) 的不保真度随 CMI 的缩放而不同,(iii) 的不保真度随旋转参数的不对称而不同。我们还研究了拓扑阶的 Petz 地图复原,并找到了拓扑纠缠熵的操作解释。我们的结果表明,Petz 图的恢复保真度是物质量子相的一个有用诊断。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Petz map recovery for long-range entangled quantum many-body states
Given a tripartite quantum state on 𝐴,𝐵,𝐶 and the erasure channel on 𝐶, the rotated Petz map is a recovery channel that acts on 𝐵 to recover the erased quantum information. The infidelity of the best recovery is upper bounded by the conditional mutual information (CMI). In this work, we study the infidelity of the rotated Petz map on several physically relevant long-range entangled quantum states. Specifically, we study three classes of quantum phases: (i) steady states of measurement-induced phase transitions, (ii) critical ground state under local measurements, and (iii) chiral states under local measurements. We find that the averaged infidelity of the Petz map recovery sharply distinguishes the three classes: (i) and (ii) are distinguished by the scaling of the infidelity with CMI and (iii) is characterized by an asymmetry of the fidelity with the rotation parameter. We also study Petz map recovery for topological order and find an operational interpretation of the topological entanglement entropy. Our result indicates that the recovery fidelity of the Petz map is a useful diagnostic of quantum phases of matter.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physical Review B
Physical Review B 物理-物理:凝聚态物理
CiteScore
6.70
自引率
32.40%
发文量
0
审稿时长
3.0 months
期刊介绍: Physical Review B (PRB) is the world’s largest dedicated physics journal, publishing approximately 100 new, high-quality papers each week. The most highly cited journal in condensed matter physics, PRB provides outstanding depth and breadth of coverage, combined with unrivaled context and background for ongoing research by scientists worldwide. PRB covers the full range of condensed matter, materials physics, and related subfields, including: -Structure and phase transitions -Ferroelectrics and multiferroics -Disordered systems and alloys -Magnetism -Superconductivity -Electronic structure, photonics, and metamaterials -Semiconductors and mesoscopic systems -Surfaces, nanoscience, and two-dimensional materials -Topological states of matter
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信