{"title":"长程纠缠量子多体态的 Petz 图复原","authors":"Yangrui Hu, Yijian Zou","doi":"10.1103/physrevb.110.195107","DOIUrl":null,"url":null,"abstract":"Given a tripartite quantum state on <mjx-container ctxtmenu_counter=\"34\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"(5 0 1 2 3 4)\"><mjx-mrow data-semantic-children=\"0,1,2,3,4\" data-semantic-content=\"1,3\" data-semantic- data-semantic-owns=\"0 1 2 3 4\" data-semantic-role=\"sequence\" data-semantic-speech=\"upper A comma upper B comma upper C\" data-semantic-type=\"punctuated\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"5\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c>𝐴</mjx-c></mjx-mi><mjx-mo data-semantic- data-semantic-operator=\"punctuated\" data-semantic-parent=\"5\" data-semantic-role=\"comma\" data-semantic-type=\"punctuation\"><mjx-c>,</mjx-c></mjx-mo><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"5\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\" space=\"2\"><mjx-c>𝐵</mjx-c></mjx-mi><mjx-mo data-semantic- data-semantic-operator=\"punctuated\" data-semantic-parent=\"5\" data-semantic-role=\"comma\" data-semantic-type=\"punctuation\"><mjx-c>,</mjx-c></mjx-mo><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"5\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\" space=\"2\"><mjx-c>𝐶</mjx-c></mjx-mi></mjx-mrow></mjx-math></mjx-container> and the erasure channel on <mjx-container ctxtmenu_counter=\"35\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"0\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-role=\"latinletter\" data-semantic-speech=\"upper C\" data-semantic-type=\"identifier\"><mjx-c>𝐶</mjx-c></mjx-mi></mjx-math></mjx-container>, the rotated Petz map is a recovery channel that acts on <mjx-container ctxtmenu_counter=\"36\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"0\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-role=\"latinletter\" data-semantic-speech=\"upper B\" data-semantic-type=\"identifier\"><mjx-c>𝐵</mjx-c></mjx-mi></mjx-math></mjx-container> to recover the erased quantum information. The infidelity of the best recovery is upper bounded by the conditional mutual information (CMI). In this work, we study the infidelity of the rotated Petz map on several physically relevant long-range entangled quantum states. Specifically, we study three classes of quantum phases: (i) steady states of measurement-induced phase transitions, (ii) critical ground state under local measurements, and (iii) chiral states under local measurements. We find that the averaged infidelity of the Petz map recovery sharply distinguishes the three classes: (i) and (ii) are distinguished by the scaling of the infidelity with CMI and (iii) is characterized by an asymmetry of the fidelity with the rotation parameter. We also study Petz map recovery for topological order and find an operational interpretation of the topological entanglement entropy. Our result indicates that the recovery fidelity of the Petz map is a useful diagnostic of quantum phases of matter.","PeriodicalId":20082,"journal":{"name":"Physical Review B","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Petz map recovery for long-range entangled quantum many-body states\",\"authors\":\"Yangrui Hu, Yijian Zou\",\"doi\":\"10.1103/physrevb.110.195107\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Given a tripartite quantum state on <mjx-container ctxtmenu_counter=\\\"34\\\" ctxtmenu_oldtabindex=\\\"1\\\" jax=\\\"CHTML\\\" overflow=\\\"linebreak\\\" role=\\\"tree\\\" sre-explorer- style=\\\"font-size: 100.7%;\\\" tabindex=\\\"0\\\"><mjx-math data-semantic-structure=\\\"(5 0 1 2 3 4)\\\"><mjx-mrow data-semantic-children=\\\"0,1,2,3,4\\\" data-semantic-content=\\\"1,3\\\" data-semantic- data-semantic-owns=\\\"0 1 2 3 4\\\" data-semantic-role=\\\"sequence\\\" data-semantic-speech=\\\"upper A comma upper B comma upper C\\\" data-semantic-type=\\\"punctuated\\\"><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic- data-semantic-parent=\\\"5\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\"><mjx-c>𝐴</mjx-c></mjx-mi><mjx-mo data-semantic- data-semantic-operator=\\\"punctuated\\\" data-semantic-parent=\\\"5\\\" data-semantic-role=\\\"comma\\\" data-semantic-type=\\\"punctuation\\\"><mjx-c>,</mjx-c></mjx-mo><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic- data-semantic-parent=\\\"5\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\" space=\\\"2\\\"><mjx-c>𝐵</mjx-c></mjx-mi><mjx-mo data-semantic- data-semantic-operator=\\\"punctuated\\\" data-semantic-parent=\\\"5\\\" data-semantic-role=\\\"comma\\\" data-semantic-type=\\\"punctuation\\\"><mjx-c>,</mjx-c></mjx-mo><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic- data-semantic-parent=\\\"5\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\" space=\\\"2\\\"><mjx-c>𝐶</mjx-c></mjx-mi></mjx-mrow></mjx-math></mjx-container> and the erasure channel on <mjx-container ctxtmenu_counter=\\\"35\\\" ctxtmenu_oldtabindex=\\\"1\\\" jax=\\\"CHTML\\\" overflow=\\\"linebreak\\\" role=\\\"tree\\\" sre-explorer- style=\\\"font-size: 100.7%;\\\" tabindex=\\\"0\\\"><mjx-math data-semantic-structure=\\\"0\\\"><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic- data-semantic-role=\\\"latinletter\\\" data-semantic-speech=\\\"upper C\\\" data-semantic-type=\\\"identifier\\\"><mjx-c>𝐶</mjx-c></mjx-mi></mjx-math></mjx-container>, the rotated Petz map is a recovery channel that acts on <mjx-container ctxtmenu_counter=\\\"36\\\" ctxtmenu_oldtabindex=\\\"1\\\" jax=\\\"CHTML\\\" overflow=\\\"linebreak\\\" role=\\\"tree\\\" sre-explorer- style=\\\"font-size: 100.7%;\\\" tabindex=\\\"0\\\"><mjx-math data-semantic-structure=\\\"0\\\"><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic- data-semantic-role=\\\"latinletter\\\" data-semantic-speech=\\\"upper B\\\" data-semantic-type=\\\"identifier\\\"><mjx-c>𝐵</mjx-c></mjx-mi></mjx-math></mjx-container> to recover the erased quantum information. The infidelity of the best recovery is upper bounded by the conditional mutual information (CMI). In this work, we study the infidelity of the rotated Petz map on several physically relevant long-range entangled quantum states. Specifically, we study three classes of quantum phases: (i) steady states of measurement-induced phase transitions, (ii) critical ground state under local measurements, and (iii) chiral states under local measurements. We find that the averaged infidelity of the Petz map recovery sharply distinguishes the three classes: (i) and (ii) are distinguished by the scaling of the infidelity with CMI and (iii) is characterized by an asymmetry of the fidelity with the rotation parameter. We also study Petz map recovery for topological order and find an operational interpretation of the topological entanglement entropy. Our result indicates that the recovery fidelity of the Petz map is a useful diagnostic of quantum phases of matter.\",\"PeriodicalId\":20082,\"journal\":{\"name\":\"Physical Review B\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review B\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevb.110.195107\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review B","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevb.110.195107","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
Petz map recovery for long-range entangled quantum many-body states
Given a tripartite quantum state on 𝐴,𝐵,𝐶 and the erasure channel on 𝐶, the rotated Petz map is a recovery channel that acts on 𝐵 to recover the erased quantum information. The infidelity of the best recovery is upper bounded by the conditional mutual information (CMI). In this work, we study the infidelity of the rotated Petz map on several physically relevant long-range entangled quantum states. Specifically, we study three classes of quantum phases: (i) steady states of measurement-induced phase transitions, (ii) critical ground state under local measurements, and (iii) chiral states under local measurements. We find that the averaged infidelity of the Petz map recovery sharply distinguishes the three classes: (i) and (ii) are distinguished by the scaling of the infidelity with CMI and (iii) is characterized by an asymmetry of the fidelity with the rotation parameter. We also study Petz map recovery for topological order and find an operational interpretation of the topological entanglement entropy. Our result indicates that the recovery fidelity of the Petz map is a useful diagnostic of quantum phases of matter.
期刊介绍:
Physical Review B (PRB) is the world’s largest dedicated physics journal, publishing approximately 100 new, high-quality papers each week. The most highly cited journal in condensed matter physics, PRB provides outstanding depth and breadth of coverage, combined with unrivaled context and background for ongoing research by scientists worldwide.
PRB covers the full range of condensed matter, materials physics, and related subfields, including:
-Structure and phase transitions
-Ferroelectrics and multiferroics
-Disordered systems and alloys
-Magnetism
-Superconductivity
-Electronic structure, photonics, and metamaterials
-Semiconductors and mesoscopic systems
-Surfaces, nanoscience, and two-dimensional materials
-Topological states of matter