{"title":"通过准谐波声子计算利用禅熵预测氧化铋钛的相变","authors":"Nigel Lee En Hew, Shun-Li Shang, Zi-Kui Liu","doi":"10.1103/physrevb.110.184103","DOIUrl":null,"url":null,"abstract":"According to x-ray diffraction (XRD) measurements, <mjx-container ctxtmenu_counter=\"29\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"(5 0 4 (3 1 2))\"><mjx-mrow data-semantic-annotation=\"clearspeak:unit\" data-semantic-children=\"0,3\" data-semantic-content=\"4\" data-semantic- data-semantic-owns=\"0 4 3\" data-semantic-role=\"implicit\" data-semantic-speech=\"upper P b upper T i normal upper O 3\" data-semantic-type=\"infixop\"><mjx-mi data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"5\" data-semantic-role=\"unknown\" data-semantic-type=\"identifier\"><mjx-c noic=\"true\" style=\"padding-top: 0.706em;\">P</mjx-c><mjx-c noic=\"true\" style=\"padding-top: 0.706em;\">b</mjx-c><mjx-c noic=\"true\" style=\"padding-top: 0.706em;\">T</mjx-c><mjx-c style=\"padding-top: 0.706em;\">i</mjx-c></mjx-mi><mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"infixop,\" data-semantic-parent=\"5\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\"><mjx-c></mjx-c></mjx-mo><mjx-msub data-semantic-children=\"1,2\" data-semantic- data-semantic-owns=\"1 2\" data-semantic-parent=\"5\" data-semantic-role=\"latinletter\" data-semantic-type=\"subscript\" space=\"2\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"3\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c>O</mjx-c></mjx-mi><mjx-script style=\"vertical-align: -0.15em;\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"3\" data-semantic-role=\"integer\" data-semantic-type=\"number\" size=\"s\"><mjx-c>3</mjx-c></mjx-mn></mjx-script></mjx-msub></mjx-mrow></mjx-math></mjx-container> undergoes a phase transition from a tetragonal ferroelectric (FE) phase to a cubic paraelectric phase at 763 K. However, x-ray absorption fine-structure (XAFS) measurements indicate that <mjx-container ctxtmenu_counter=\"30\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"(5 0 4 (3 1 2))\"><mjx-mrow data-semantic-annotation=\"clearspeak:unit\" data-semantic-children=\"0,3\" data-semantic-content=\"4\" data-semantic- data-semantic-owns=\"0 4 3\" data-semantic-role=\"implicit\" data-semantic-speech=\"upper P b upper T i normal upper O 3\" data-semantic-type=\"infixop\"><mjx-mi data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"5\" data-semantic-role=\"unknown\" data-semantic-type=\"identifier\"><mjx-c noic=\"true\" style=\"padding-top: 0.706em;\">P</mjx-c><mjx-c noic=\"true\" style=\"padding-top: 0.706em;\">b</mjx-c><mjx-c noic=\"true\" style=\"padding-top: 0.706em;\">T</mjx-c><mjx-c style=\"padding-top: 0.706em;\">i</mjx-c></mjx-mi><mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"infixop,\" data-semantic-parent=\"5\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\"><mjx-c></mjx-c></mjx-mo><mjx-msub data-semantic-children=\"1,2\" data-semantic- data-semantic-owns=\"1 2\" data-semantic-parent=\"5\" data-semantic-role=\"latinletter\" data-semantic-type=\"subscript\" space=\"2\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"3\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c>O</mjx-c></mjx-mi><mjx-script style=\"vertical-align: -0.15em;\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"3\" data-semantic-role=\"integer\" data-semantic-type=\"number\" size=\"s\"><mjx-c>3</mjx-c></mjx-mn></mjx-script></mjx-msub></mjx-mrow></mjx-math></mjx-container> is locally tetragonal even after the phase transition. The difference in these results is because XAFS measurements can probe local features of a structure, while XRD averages over such local features. For both measurements to be consistent, <mjx-container ctxtmenu_counter=\"31\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"(5 0 4 (3 1 2))\"><mjx-mrow data-semantic-annotation=\"clearspeak:unit\" data-semantic-children=\"0,3\" data-semantic-content=\"4\" data-semantic- data-semantic-owns=\"0 4 3\" data-semantic-role=\"implicit\" data-semantic-speech=\"upper P b upper T i normal upper O 3\" data-semantic-type=\"infixop\"><mjx-mi data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"5\" data-semantic-role=\"unknown\" data-semantic-type=\"identifier\"><mjx-c noic=\"true\" style=\"padding-top: 0.706em;\">P</mjx-c><mjx-c noic=\"true\" style=\"padding-top: 0.706em;\">b</mjx-c><mjx-c noic=\"true\" style=\"padding-top: 0.706em;\">T</mjx-c><mjx-c style=\"padding-top: 0.706em;\">i</mjx-c></mjx-mi><mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"infixop,\" data-semantic-parent=\"5\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\"><mjx-c></mjx-c></mjx-mo><mjx-msub data-semantic-children=\"1,2\" data-semantic- data-semantic-owns=\"1 2\" data-semantic-parent=\"5\" data-semantic-role=\"latinletter\" data-semantic-type=\"subscript\" space=\"2\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"3\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c>O</mjx-c></mjx-mi><mjx-script style=\"vertical-align: -0.15em;\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"3\" data-semantic-role=\"integer\" data-semantic-type=\"number\" size=\"s\"><mjx-c>3</mjx-c></mjx-mn></mjx-script></mjx-msub></mjx-mrow></mjx-math></mjx-container> is macroscopically cubic but locally tetragonal after the phase transition. Despite this, most models, such as the Landau-Ginsburg-Devonshire theory and effective Hamiltonians, are still unable to explain this phenomenon. Moreover, these methods involve model parameters fitted to experimental or theoretical data and do not consider other tetragonal configurations, such as domain walls, to predict the phase transition. In our previous study, we used our zentropy approach to predict the phase transition by considering the tetragonal FE ground-state configuration and the tetragonal 90 ° and 180 ° domain wall configurations with their total energies at 0 K. In this paper, the Helmholtz energies of the three configurations are obtained from density functional theory calculations through energy-volume curves and phonon calculations. The predicted phase transition temperature using the meta-GGA <mjx-container ctxtmenu_counter=\"32\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"(5 (2 0 1) 4 3)\"><mjx-mrow data-semantic-annotation=\"clearspeak:unit\" data-semantic-children=\"2,3\" data-semantic-content=\"4\" data-semantic- data-semantic-owns=\"2 4 3\" data-semantic-role=\"implicit\" data-semantic-speech=\"r squared upper S upper C upper A upper N\" data-semantic-type=\"infixop\"><mjx-msup data-semantic-children=\"0,1\" data-semantic- data-semantic-owns=\"0 1\" data-semantic-parent=\"5\" data-semantic-role=\"latinletter\" data-semantic-type=\"superscript\"><mjx-mrow><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c>𝑟</mjx-c></mjx-mi></mjx-mrow><mjx-script style=\"vertical-align: 0.363em;\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"integer\" data-semantic-type=\"number\" size=\"s\"><mjx-c>2</mjx-c></mjx-mn></mjx-script></mjx-msup><mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"infixop,\" data-semantic-parent=\"5\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\"><mjx-c></mjx-c></mjx-mo><mjx-mi data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"5\" data-semantic-role=\"unknown\" data-semantic-type=\"identifier\" space=\"2\"><mjx-c noic=\"true\" style=\"padding-top: 0.669em;\">S</mjx-c><mjx-c noic=\"true\" style=\"padding-top: 0.669em;\">C</mjx-c><mjx-c noic=\"true\" style=\"padding-top: 0.669em;\">A</mjx-c><mjx-c style=\"padding-top: 0.669em;\">N</mjx-c></mjx-mi></mjx-mrow></mjx-math></mjx-container> and revised multiplicities of configurations is 716 K, showing good agreement with the experimental value of 763 K.","PeriodicalId":20082,"journal":{"name":"Physical Review B","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predicting phase transitions inPbTiO3using zentropy through quasiharmonic phonon calculations\",\"authors\":\"Nigel Lee En Hew, Shun-Li Shang, Zi-Kui Liu\",\"doi\":\"10.1103/physrevb.110.184103\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"According to x-ray diffraction (XRD) measurements, <mjx-container ctxtmenu_counter=\\\"29\\\" ctxtmenu_oldtabindex=\\\"1\\\" jax=\\\"CHTML\\\" overflow=\\\"linebreak\\\" role=\\\"tree\\\" sre-explorer- style=\\\"font-size: 100.7%;\\\" tabindex=\\\"0\\\"><mjx-math data-semantic-structure=\\\"(5 0 4 (3 1 2))\\\"><mjx-mrow data-semantic-annotation=\\\"clearspeak:unit\\\" data-semantic-children=\\\"0,3\\\" data-semantic-content=\\\"4\\\" data-semantic- data-semantic-owns=\\\"0 4 3\\\" data-semantic-role=\\\"implicit\\\" data-semantic-speech=\\\"upper P b upper T i normal upper O 3\\\" data-semantic-type=\\\"infixop\\\"><mjx-mi data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-parent=\\\"5\\\" data-semantic-role=\\\"unknown\\\" data-semantic-type=\\\"identifier\\\"><mjx-c noic=\\\"true\\\" style=\\\"padding-top: 0.706em;\\\">P</mjx-c><mjx-c noic=\\\"true\\\" style=\\\"padding-top: 0.706em;\\\">b</mjx-c><mjx-c noic=\\\"true\\\" style=\\\"padding-top: 0.706em;\\\">T</mjx-c><mjx-c style=\\\"padding-top: 0.706em;\\\">i</mjx-c></mjx-mi><mjx-mo data-semantic-added=\\\"true\\\" data-semantic- data-semantic-operator=\\\"infixop,\\\" data-semantic-parent=\\\"5\\\" data-semantic-role=\\\"multiplication\\\" data-semantic-type=\\\"operator\\\"><mjx-c></mjx-c></mjx-mo><mjx-msub data-semantic-children=\\\"1,2\\\" data-semantic- data-semantic-owns=\\\"1 2\\\" data-semantic-parent=\\\"5\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"subscript\\\" space=\\\"2\\\"><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-parent=\\\"3\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\"><mjx-c>O</mjx-c></mjx-mi><mjx-script style=\\\"vertical-align: -0.15em;\\\"><mjx-mn data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-parent=\\\"3\\\" data-semantic-role=\\\"integer\\\" data-semantic-type=\\\"number\\\" size=\\\"s\\\"><mjx-c>3</mjx-c></mjx-mn></mjx-script></mjx-msub></mjx-mrow></mjx-math></mjx-container> undergoes a phase transition from a tetragonal ferroelectric (FE) phase to a cubic paraelectric phase at 763 K. However, x-ray absorption fine-structure (XAFS) measurements indicate that <mjx-container ctxtmenu_counter=\\\"30\\\" ctxtmenu_oldtabindex=\\\"1\\\" jax=\\\"CHTML\\\" overflow=\\\"linebreak\\\" role=\\\"tree\\\" sre-explorer- style=\\\"font-size: 100.7%;\\\" tabindex=\\\"0\\\"><mjx-math data-semantic-structure=\\\"(5 0 4 (3 1 2))\\\"><mjx-mrow data-semantic-annotation=\\\"clearspeak:unit\\\" data-semantic-children=\\\"0,3\\\" data-semantic-content=\\\"4\\\" data-semantic- data-semantic-owns=\\\"0 4 3\\\" data-semantic-role=\\\"implicit\\\" data-semantic-speech=\\\"upper P b upper T i normal upper O 3\\\" data-semantic-type=\\\"infixop\\\"><mjx-mi data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-parent=\\\"5\\\" data-semantic-role=\\\"unknown\\\" data-semantic-type=\\\"identifier\\\"><mjx-c noic=\\\"true\\\" style=\\\"padding-top: 0.706em;\\\">P</mjx-c><mjx-c noic=\\\"true\\\" style=\\\"padding-top: 0.706em;\\\">b</mjx-c><mjx-c noic=\\\"true\\\" style=\\\"padding-top: 0.706em;\\\">T</mjx-c><mjx-c style=\\\"padding-top: 0.706em;\\\">i</mjx-c></mjx-mi><mjx-mo data-semantic-added=\\\"true\\\" data-semantic- data-semantic-operator=\\\"infixop,\\\" data-semantic-parent=\\\"5\\\" data-semantic-role=\\\"multiplication\\\" data-semantic-type=\\\"operator\\\"><mjx-c></mjx-c></mjx-mo><mjx-msub data-semantic-children=\\\"1,2\\\" data-semantic- data-semantic-owns=\\\"1 2\\\" data-semantic-parent=\\\"5\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"subscript\\\" space=\\\"2\\\"><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-parent=\\\"3\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\"><mjx-c>O</mjx-c></mjx-mi><mjx-script style=\\\"vertical-align: -0.15em;\\\"><mjx-mn data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-parent=\\\"3\\\" data-semantic-role=\\\"integer\\\" data-semantic-type=\\\"number\\\" size=\\\"s\\\"><mjx-c>3</mjx-c></mjx-mn></mjx-script></mjx-msub></mjx-mrow></mjx-math></mjx-container> is locally tetragonal even after the phase transition. The difference in these results is because XAFS measurements can probe local features of a structure, while XRD averages over such local features. For both measurements to be consistent, <mjx-container ctxtmenu_counter=\\\"31\\\" ctxtmenu_oldtabindex=\\\"1\\\" jax=\\\"CHTML\\\" overflow=\\\"linebreak\\\" role=\\\"tree\\\" sre-explorer- style=\\\"font-size: 100.7%;\\\" tabindex=\\\"0\\\"><mjx-math data-semantic-structure=\\\"(5 0 4 (3 1 2))\\\"><mjx-mrow data-semantic-annotation=\\\"clearspeak:unit\\\" data-semantic-children=\\\"0,3\\\" data-semantic-content=\\\"4\\\" data-semantic- data-semantic-owns=\\\"0 4 3\\\" data-semantic-role=\\\"implicit\\\" data-semantic-speech=\\\"upper P b upper T i normal upper O 3\\\" data-semantic-type=\\\"infixop\\\"><mjx-mi data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-parent=\\\"5\\\" data-semantic-role=\\\"unknown\\\" data-semantic-type=\\\"identifier\\\"><mjx-c noic=\\\"true\\\" style=\\\"padding-top: 0.706em;\\\">P</mjx-c><mjx-c noic=\\\"true\\\" style=\\\"padding-top: 0.706em;\\\">b</mjx-c><mjx-c noic=\\\"true\\\" style=\\\"padding-top: 0.706em;\\\">T</mjx-c><mjx-c style=\\\"padding-top: 0.706em;\\\">i</mjx-c></mjx-mi><mjx-mo data-semantic-added=\\\"true\\\" data-semantic- data-semantic-operator=\\\"infixop,\\\" data-semantic-parent=\\\"5\\\" data-semantic-role=\\\"multiplication\\\" data-semantic-type=\\\"operator\\\"><mjx-c></mjx-c></mjx-mo><mjx-msub data-semantic-children=\\\"1,2\\\" data-semantic- data-semantic-owns=\\\"1 2\\\" data-semantic-parent=\\\"5\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"subscript\\\" space=\\\"2\\\"><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-parent=\\\"3\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\"><mjx-c>O</mjx-c></mjx-mi><mjx-script style=\\\"vertical-align: -0.15em;\\\"><mjx-mn data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-parent=\\\"3\\\" data-semantic-role=\\\"integer\\\" data-semantic-type=\\\"number\\\" size=\\\"s\\\"><mjx-c>3</mjx-c></mjx-mn></mjx-script></mjx-msub></mjx-mrow></mjx-math></mjx-container> is macroscopically cubic but locally tetragonal after the phase transition. Despite this, most models, such as the Landau-Ginsburg-Devonshire theory and effective Hamiltonians, are still unable to explain this phenomenon. Moreover, these methods involve model parameters fitted to experimental or theoretical data and do not consider other tetragonal configurations, such as domain walls, to predict the phase transition. In our previous study, we used our zentropy approach to predict the phase transition by considering the tetragonal FE ground-state configuration and the tetragonal 90 ° and 180 ° domain wall configurations with their total energies at 0 K. In this paper, the Helmholtz energies of the three configurations are obtained from density functional theory calculations through energy-volume curves and phonon calculations. The predicted phase transition temperature using the meta-GGA <mjx-container ctxtmenu_counter=\\\"32\\\" ctxtmenu_oldtabindex=\\\"1\\\" jax=\\\"CHTML\\\" overflow=\\\"linebreak\\\" role=\\\"tree\\\" sre-explorer- style=\\\"font-size: 100.7%;\\\" tabindex=\\\"0\\\"><mjx-math data-semantic-structure=\\\"(5 (2 0 1) 4 3)\\\"><mjx-mrow data-semantic-annotation=\\\"clearspeak:unit\\\" data-semantic-children=\\\"2,3\\\" data-semantic-content=\\\"4\\\" data-semantic- data-semantic-owns=\\\"2 4 3\\\" data-semantic-role=\\\"implicit\\\" data-semantic-speech=\\\"r squared upper S upper C upper A upper N\\\" data-semantic-type=\\\"infixop\\\"><mjx-msup data-semantic-children=\\\"0,1\\\" data-semantic- data-semantic-owns=\\\"0 1\\\" data-semantic-parent=\\\"5\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"superscript\\\"><mjx-mrow><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic- data-semantic-parent=\\\"2\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\"><mjx-c>𝑟</mjx-c></mjx-mi></mjx-mrow><mjx-script style=\\\"vertical-align: 0.363em;\\\"><mjx-mn data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-parent=\\\"2\\\" data-semantic-role=\\\"integer\\\" data-semantic-type=\\\"number\\\" size=\\\"s\\\"><mjx-c>2</mjx-c></mjx-mn></mjx-script></mjx-msup><mjx-mo data-semantic-added=\\\"true\\\" data-semantic- data-semantic-operator=\\\"infixop,\\\" data-semantic-parent=\\\"5\\\" data-semantic-role=\\\"multiplication\\\" data-semantic-type=\\\"operator\\\"><mjx-c></mjx-c></mjx-mo><mjx-mi data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-parent=\\\"5\\\" data-semantic-role=\\\"unknown\\\" data-semantic-type=\\\"identifier\\\" space=\\\"2\\\"><mjx-c noic=\\\"true\\\" style=\\\"padding-top: 0.669em;\\\">S</mjx-c><mjx-c noic=\\\"true\\\" style=\\\"padding-top: 0.669em;\\\">C</mjx-c><mjx-c noic=\\\"true\\\" style=\\\"padding-top: 0.669em;\\\">A</mjx-c><mjx-c style=\\\"padding-top: 0.669em;\\\">N</mjx-c></mjx-mi></mjx-mrow></mjx-math></mjx-container> and revised multiplicities of configurations is 716 K, showing good agreement with the experimental value of 763 K.\",\"PeriodicalId\":20082,\"journal\":{\"name\":\"Physical Review B\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review B\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevb.110.184103\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review B","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevb.110.184103","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0
摘要
根据 X 射线衍射(XRD)测量结果,PbTiO3 在 763 K 时会发生从四方铁电(FE)相到立方副电相的相变。然而,X 射线吸收精细结构(XAFS)测量结果表明,即使在相变之后,PbTiO3 局部仍为四方结构。这些结果之所以不同,是因为 XAFS 测量可以探测结构的局部特征,而 XRD 则是对这些局部特征进行平均。要使两种测量结果保持一致,PbTiO3 在宏观上是立方的,但在相变后局部是四方的。尽管如此,大多数模型,如兰道-金斯堡-德文郡理论和有效哈密顿模型,仍然无法解释这一现象。此外,这些方法涉及与实验或理论数据拟合的模型参数,并不考虑其他四方构型(如畴壁)来预测相变。在之前的研究中,我们采用了zentropy方法,通过考虑四方FE基态构型以及四方90 °和180 °畴壁构型在0 K时的总能量来预测相变。利用元-GGA 𝑟2SCAN 和修订后的构型倍率预测出的相变温度为 716 K,与实验值 763 K 非常吻合。
Predicting phase transitions inPbTiO3using zentropy through quasiharmonic phonon calculations
According to x-ray diffraction (XRD) measurements, PbTiO3 undergoes a phase transition from a tetragonal ferroelectric (FE) phase to a cubic paraelectric phase at 763 K. However, x-ray absorption fine-structure (XAFS) measurements indicate that PbTiO3 is locally tetragonal even after the phase transition. The difference in these results is because XAFS measurements can probe local features of a structure, while XRD averages over such local features. For both measurements to be consistent, PbTiO3 is macroscopically cubic but locally tetragonal after the phase transition. Despite this, most models, such as the Landau-Ginsburg-Devonshire theory and effective Hamiltonians, are still unable to explain this phenomenon. Moreover, these methods involve model parameters fitted to experimental or theoretical data and do not consider other tetragonal configurations, such as domain walls, to predict the phase transition. In our previous study, we used our zentropy approach to predict the phase transition by considering the tetragonal FE ground-state configuration and the tetragonal 90 ° and 180 ° domain wall configurations with their total energies at 0 K. In this paper, the Helmholtz energies of the three configurations are obtained from density functional theory calculations through energy-volume curves and phonon calculations. The predicted phase transition temperature using the meta-GGA 𝑟2SCAN and revised multiplicities of configurations is 716 K, showing good agreement with the experimental value of 763 K.
期刊介绍:
Physical Review B (PRB) is the world’s largest dedicated physics journal, publishing approximately 100 new, high-quality papers each week. The most highly cited journal in condensed matter physics, PRB provides outstanding depth and breadth of coverage, combined with unrivaled context and background for ongoing research by scientists worldwide.
PRB covers the full range of condensed matter, materials physics, and related subfields, including:
-Structure and phase transitions
-Ferroelectrics and multiferroics
-Disordered systems and alloys
-Magnetism
-Superconductivity
-Electronic structure, photonics, and metamaterials
-Semiconductors and mesoscopic systems
-Surfaces, nanoscience, and two-dimensional materials
-Topological states of matter