量子场论中的扭曲因子和固定时间模型

IF 1.3 3区 物理与天体物理 Q3 PHYSICS, MATHEMATICAL
Ezio Vasselli
{"title":"量子场论中的扭曲因子和固定时间模型","authors":"Ezio Vasselli","doi":"10.1007/s11005-024-01878-w","DOIUrl":null,"url":null,"abstract":"<div><p>We construct a class of fixed-time models in which the commutations relations of a Dirac field with a bosonic field are non-trivial and depend on the choice of a given distribution (“twisting factor”). If the twisting factor is fundamental solution of a differential operator, then applying the differential operator to the bosonic field yields a generator of the local gauge transformations of the Dirac field. Charged vectors generated by the Dirac field define states of the bosonic field which in general are not local excitations of the given reference state. The Hamiltonian density of the bosonic field presents a non-trivial interaction term: besides creating and annihilating bosons, it acts on momenta of fermionic wave functions. When the twisting factor is the Coulomb potential, the bosonic field contributes to the divergence of an electric field and its Laplacian generates local gauge transformations of the Dirac field. In this way, we get a fixed-time model fulfilling the equal time commutation relations of the interacting Coulomb gauge.</p></div>","PeriodicalId":685,"journal":{"name":"Letters in Mathematical Physics","volume":"114 6","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Twisting factors and fixed-time models in quantum field theory\",\"authors\":\"Ezio Vasselli\",\"doi\":\"10.1007/s11005-024-01878-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We construct a class of fixed-time models in which the commutations relations of a Dirac field with a bosonic field are non-trivial and depend on the choice of a given distribution (“twisting factor”). If the twisting factor is fundamental solution of a differential operator, then applying the differential operator to the bosonic field yields a generator of the local gauge transformations of the Dirac field. Charged vectors generated by the Dirac field define states of the bosonic field which in general are not local excitations of the given reference state. The Hamiltonian density of the bosonic field presents a non-trivial interaction term: besides creating and annihilating bosons, it acts on momenta of fermionic wave functions. When the twisting factor is the Coulomb potential, the bosonic field contributes to the divergence of an electric field and its Laplacian generates local gauge transformations of the Dirac field. In this way, we get a fixed-time model fulfilling the equal time commutation relations of the interacting Coulomb gauge.</p></div>\",\"PeriodicalId\":685,\"journal\":{\"name\":\"Letters in Mathematical Physics\",\"volume\":\"114 6\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Letters in Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11005-024-01878-w\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Letters in Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11005-024-01878-w","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

我们构建了一类固定时间模型,在这类模型中,狄拉克场与玻色场的换元关系是非微妙的,并且取决于给定分布("扭曲因子")的选择。如果扭转因子是微分算子的基本解,那么将微分算子应用于玻色场就会产生狄拉克场的局部规整变换。由狄拉克场产生的带电矢量定义了玻色场的状态,而这些状态一般都不是给定参考状态的局部激发。玻色场的哈密顿密度存在一个非三维的相互作用项:除了产生和湮灭玻色子之外,它还作用于费米子波函数的矩。当扭转因子为库仑势时,玻色场对电场的发散起作用,其拉普拉奇产生了狄拉克场的局部规整变换。这样,我们就得到了一个满足相互作用库仑计等时换向关系的定时模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Twisting factors and fixed-time models in quantum field theory

We construct a class of fixed-time models in which the commutations relations of a Dirac field with a bosonic field are non-trivial and depend on the choice of a given distribution (“twisting factor”). If the twisting factor is fundamental solution of a differential operator, then applying the differential operator to the bosonic field yields a generator of the local gauge transformations of the Dirac field. Charged vectors generated by the Dirac field define states of the bosonic field which in general are not local excitations of the given reference state. The Hamiltonian density of the bosonic field presents a non-trivial interaction term: besides creating and annihilating bosons, it acts on momenta of fermionic wave functions. When the twisting factor is the Coulomb potential, the bosonic field contributes to the divergence of an electric field and its Laplacian generates local gauge transformations of the Dirac field. In this way, we get a fixed-time model fulfilling the equal time commutation relations of the interacting Coulomb gauge.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Letters in Mathematical Physics
Letters in Mathematical Physics 物理-物理:数学物理
CiteScore
2.40
自引率
8.30%
发文量
111
审稿时长
3 months
期刊介绍: The aim of Letters in Mathematical Physics is to attract the community''s attention on important and original developments in the area of mathematical physics and contemporary theoretical physics. The journal publishes letters and longer research articles, occasionally also articles containing topical reviews. We are committed to both fast publication and careful refereeing. In addition, the journal offers important contributions to modern mathematics in fields which have a potential physical application, and important developments in theoretical physics which have potential mathematical impact.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信