Cheng Wu;Qifan Yu;Shaoning Li;Anmin Fu;Mengguang Liao;Lelin Li
{"title":"基于地形特征识别的空载光子计数激光雷达数据几何定位验证","authors":"Cheng Wu;Qifan Yu;Shaoning Li;Anmin Fu;Mengguang Liao;Lelin Li","doi":"10.1109/JSTARS.2024.3479315","DOIUrl":null,"url":null,"abstract":"The horizontal positioning error in spaceborne photon point clouds seriously constrains their elevation accuracy. To improve data quality for enhanced performance in scientific applications, this study proposes a photon correction method based on terrain feature identification, specifically for the photon-counting spaceborne lidar. Unlike the conventional terrain matching method, this approach accurately determines the horizontal positions of photons within a small-range area by establishing a matching relationship between the laser elevation turning points and the surface boundary lines. The feasibility of this method was verified using the satellite laser altimetry simulation platform, and the horizontal correction accuracy can reach within 0.6 m. Subsequently, the experiments were conducted to verify the geometric positioning accuracy of ICESat-2 across different areas, leveraging high-precision digital surface models. The results indicate that the average horizontal accuracy of ICESat-2 was 3.81 m, and the elevation accuracy was better than 0.5 m.","PeriodicalId":13116,"journal":{"name":"IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing","volume":"17 ","pages":"19408-19419"},"PeriodicalIF":4.7000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10715570","citationCount":"0","resultStr":"{\"title\":\"Geometric Positioning Verification of Spaceborne Photon-Counting Lidar Data Based on Terrain Feature Identification\",\"authors\":\"Cheng Wu;Qifan Yu;Shaoning Li;Anmin Fu;Mengguang Liao;Lelin Li\",\"doi\":\"10.1109/JSTARS.2024.3479315\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The horizontal positioning error in spaceborne photon point clouds seriously constrains their elevation accuracy. To improve data quality for enhanced performance in scientific applications, this study proposes a photon correction method based on terrain feature identification, specifically for the photon-counting spaceborne lidar. Unlike the conventional terrain matching method, this approach accurately determines the horizontal positions of photons within a small-range area by establishing a matching relationship between the laser elevation turning points and the surface boundary lines. The feasibility of this method was verified using the satellite laser altimetry simulation platform, and the horizontal correction accuracy can reach within 0.6 m. Subsequently, the experiments were conducted to verify the geometric positioning accuracy of ICESat-2 across different areas, leveraging high-precision digital surface models. The results indicate that the average horizontal accuracy of ICESat-2 was 3.81 m, and the elevation accuracy was better than 0.5 m.\",\"PeriodicalId\":13116,\"journal\":{\"name\":\"IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing\",\"volume\":\"17 \",\"pages\":\"19408-19419\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10715570\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10715570/\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10715570/","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Geometric Positioning Verification of Spaceborne Photon-Counting Lidar Data Based on Terrain Feature Identification
The horizontal positioning error in spaceborne photon point clouds seriously constrains their elevation accuracy. To improve data quality for enhanced performance in scientific applications, this study proposes a photon correction method based on terrain feature identification, specifically for the photon-counting spaceborne lidar. Unlike the conventional terrain matching method, this approach accurately determines the horizontal positions of photons within a small-range area by establishing a matching relationship between the laser elevation turning points and the surface boundary lines. The feasibility of this method was verified using the satellite laser altimetry simulation platform, and the horizontal correction accuracy can reach within 0.6 m. Subsequently, the experiments were conducted to verify the geometric positioning accuracy of ICESat-2 across different areas, leveraging high-precision digital surface models. The results indicate that the average horizontal accuracy of ICESat-2 was 3.81 m, and the elevation accuracy was better than 0.5 m.
期刊介绍:
The IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing addresses the growing field of applications in Earth observations and remote sensing, and also provides a venue for the rapidly expanding special issues that are being sponsored by the IEEE Geosciences and Remote Sensing Society. The journal draws upon the experience of the highly successful “IEEE Transactions on Geoscience and Remote Sensing” and provide a complementary medium for the wide range of topics in applied earth observations. The ‘Applications’ areas encompasses the societal benefit areas of the Global Earth Observations Systems of Systems (GEOSS) program. Through deliberations over two years, ministers from 50 countries agreed to identify nine areas where Earth observation could positively impact the quality of life and health of their respective countries. Some of these are areas not traditionally addressed in the IEEE context. These include biodiversity, health and climate. Yet it is the skill sets of IEEE members, in areas such as observations, communications, computers, signal processing, standards and ocean engineering, that form the technical underpinnings of GEOSS. Thus, the Journal attracts a broad range of interests that serves both present members in new ways and expands the IEEE visibility into new areas.