一类具有非规则不连续线的平面不连续片断二次微分系统中的极限循环 (I)

IF 5.4 3区 材料科学 Q2 CHEMISTRY, PHYSICAL
Dongping He , Jaume Llibre
{"title":"一类具有非规则不连续线的平面不连续片断二次微分系统中的极限循环 (I)","authors":"Dongping He ,&nbsp;Jaume Llibre","doi":"10.1016/j.matcom.2024.10.016","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper we study the limit cycles which bifurcate from the periodic orbits of the quadratic uniform isochronous center <span><math><mrow><mover><mrow><mi>x</mi></mrow><mrow><mo>̇</mo></mrow></mover><mo>=</mo><mo>−</mo><mi>y</mi><mo>+</mo><mi>x</mi><mi>y</mi></mrow></math></span>, <span><math><mrow><mover><mrow><mi>y</mi></mrow><mrow><mo>̇</mo></mrow></mover><mo>=</mo><mi>x</mi><mo>+</mo><msup><mrow><mi>y</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></math></span>, when this center is perturbed inside the class of all discontinuous piecewise quadratic polynomial differential systems in the plane with two pieces separated by a non-regular line of discontinuity, which is formed by two rays starting from the origin and forming an angle <span><math><mrow><mi>α</mi><mo>=</mo><mi>π</mi><mo>/</mo><mn>2</mn></mrow></math></span>. Using the Chebyshev theory we prove that the maximum number of hyperbolic limit cycles which can bifurcate from these periodic orbits is exactly 8 using the averaging theory of first order. For this class of discontinuous piecewise differential systems we obtain three more limit cycles than the line of discontinuity is regular, i.e., the case of where the two rays form an angle <span><math><mrow><mi>α</mi><mo>=</mo><mi>π</mi></mrow></math></span>.</div></div>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Limit cycles in a class of planar discontinuous piecewise quadratic differential systems with a non-regular line of discontinuity (I)\",\"authors\":\"Dongping He ,&nbsp;Jaume Llibre\",\"doi\":\"10.1016/j.matcom.2024.10.016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper we study the limit cycles which bifurcate from the periodic orbits of the quadratic uniform isochronous center <span><math><mrow><mover><mrow><mi>x</mi></mrow><mrow><mo>̇</mo></mrow></mover><mo>=</mo><mo>−</mo><mi>y</mi><mo>+</mo><mi>x</mi><mi>y</mi></mrow></math></span>, <span><math><mrow><mover><mrow><mi>y</mi></mrow><mrow><mo>̇</mo></mrow></mover><mo>=</mo><mi>x</mi><mo>+</mo><msup><mrow><mi>y</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></math></span>, when this center is perturbed inside the class of all discontinuous piecewise quadratic polynomial differential systems in the plane with two pieces separated by a non-regular line of discontinuity, which is formed by two rays starting from the origin and forming an angle <span><math><mrow><mi>α</mi><mo>=</mo><mi>π</mi><mo>/</mo><mn>2</mn></mrow></math></span>. Using the Chebyshev theory we prove that the maximum number of hyperbolic limit cycles which can bifurcate from these periodic orbits is exactly 8 using the averaging theory of first order. For this class of discontinuous piecewise differential systems we obtain three more limit cycles than the line of discontinuity is regular, i.e., the case of where the two rays form an angle <span><math><mrow><mi>α</mi><mo>=</mo><mi>π</mi></mrow></math></span>.</div></div>\",\"PeriodicalId\":4,\"journal\":{\"name\":\"ACS Applied Energy Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Energy Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378475424004075\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378475424004075","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了当二次均匀等时中心 ẋ=-y+xy, ẏ=x+y2 的周期轨道在平面内所有不连续片断二次多项式微分系统类中受到扰动时,从该中心分叉出来的极限周期,该类中的两个片断被一条非规则的不连续线隔开,该不连续线由两条从原点出发并形成一个角度 α=π/2 的射线构成。我们利用切比雪夫理论证明,利用一阶平均理论,从这些周期轨道分岔出的双曲极限周期的最大数目正好是 8。对于这一类不连续片断微分系统,如果不连续线是规则的,即两条射线形成一个角度 α=π 的情况下,我们会得到三个以上的极限循环。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Limit cycles in a class of planar discontinuous piecewise quadratic differential systems with a non-regular line of discontinuity (I)
In this paper we study the limit cycles which bifurcate from the periodic orbits of the quadratic uniform isochronous center ẋ=y+xy, ẏ=x+y2, when this center is perturbed inside the class of all discontinuous piecewise quadratic polynomial differential systems in the plane with two pieces separated by a non-regular line of discontinuity, which is formed by two rays starting from the origin and forming an angle α=π/2. Using the Chebyshev theory we prove that the maximum number of hyperbolic limit cycles which can bifurcate from these periodic orbits is exactly 8 using the averaging theory of first order. For this class of discontinuous piecewise differential systems we obtain three more limit cycles than the line of discontinuity is regular, i.e., the case of where the two rays form an angle α=π.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Energy Materials
ACS Applied Energy Materials Materials Science-Materials Chemistry
CiteScore
10.30
自引率
6.20%
发文量
1368
期刊介绍: ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信