定量遥感大语言模型的快速发展:水深反演案例

IF 5.7 Q1 ENVIRONMENTAL SCIENCES
Zhongqiang Wu , Wei Shen , Zhihua Mao , Shulei Wu
{"title":"定量遥感大语言模型的快速发展:水深反演案例","authors":"Zhongqiang Wu ,&nbsp;Wei Shen ,&nbsp;Zhihua Mao ,&nbsp;Shulei Wu","doi":"10.1016/j.srs.2024.100166","DOIUrl":null,"url":null,"abstract":"<div><div>This study presents a comparative analysis of two advanced AI models, ChatGPT and ERNIE, in the context of water depth inversion. Utilizing satellite spectral data and in-situ bathymetric measurements collected from Rushikonda Beach, India, we processed and analyzed the data to generate high-resolution bathymetric maps. Both models demonstrated significant accuracy, with ChatGPT slightly outperforming ERNIE in terms of mean absolute error. The study highlights the advantages of AI models, such as efficient data processing and the ability to integrate multi-modal inputs, while also discussing challenges related to data quality, interpretability, and computational demands. The findings suggest that while both models are highly effective for water depth inversion, ongoing improvements in data handling and model transparency are essential for their broader application in environmental monitoring. This research contributes to the understanding of AI capabilities in geospatial analysis and sets the stage for future enhancements in the field.</div></div>","PeriodicalId":101147,"journal":{"name":"Science of Remote Sensing","volume":"10 ","pages":"Article 100166"},"PeriodicalIF":5.7000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rapid advancements in large language models for quantitative remote sensing: The case of water depth inversion\",\"authors\":\"Zhongqiang Wu ,&nbsp;Wei Shen ,&nbsp;Zhihua Mao ,&nbsp;Shulei Wu\",\"doi\":\"10.1016/j.srs.2024.100166\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study presents a comparative analysis of two advanced AI models, ChatGPT and ERNIE, in the context of water depth inversion. Utilizing satellite spectral data and in-situ bathymetric measurements collected from Rushikonda Beach, India, we processed and analyzed the data to generate high-resolution bathymetric maps. Both models demonstrated significant accuracy, with ChatGPT slightly outperforming ERNIE in terms of mean absolute error. The study highlights the advantages of AI models, such as efficient data processing and the ability to integrate multi-modal inputs, while also discussing challenges related to data quality, interpretability, and computational demands. The findings suggest that while both models are highly effective for water depth inversion, ongoing improvements in data handling and model transparency are essential for their broader application in environmental monitoring. This research contributes to the understanding of AI capabilities in geospatial analysis and sets the stage for future enhancements in the field.</div></div>\",\"PeriodicalId\":101147,\"journal\":{\"name\":\"Science of Remote Sensing\",\"volume\":\"10 \",\"pages\":\"Article 100166\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2024-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science of Remote Sensing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666017224000506\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science of Remote Sensing","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666017224000506","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

本研究以水深反演为背景,对 ChatGPT 和 ERNIE 这两种先进的人工智能模型进行了比较分析。利用从印度 Rushikonda 海滩收集的卫星光谱数据和现场测深数据,我们对数据进行了处理和分析,生成了高分辨率测深图。两个模型都表现出了很高的精度,就平均绝对误差而言,ChatGPT 略优于 ERNIE。研究强调了人工智能模型的优势,如高效的数据处理和整合多模态输入的能力,同时也讨论了与数据质量、可解释性和计算需求相关的挑战。研究结果表明,虽然这两种模型在水深反演方面都非常有效,但要在环境监测中得到更广泛的应用,就必须不断改进数据处理和模型透明度。这项研究有助于人们了解地理空间分析中的人工智能能力,并为该领域未来的发展奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Rapid advancements in large language models for quantitative remote sensing: The case of water depth inversion
This study presents a comparative analysis of two advanced AI models, ChatGPT and ERNIE, in the context of water depth inversion. Utilizing satellite spectral data and in-situ bathymetric measurements collected from Rushikonda Beach, India, we processed and analyzed the data to generate high-resolution bathymetric maps. Both models demonstrated significant accuracy, with ChatGPT slightly outperforming ERNIE in terms of mean absolute error. The study highlights the advantages of AI models, such as efficient data processing and the ability to integrate multi-modal inputs, while also discussing challenges related to data quality, interpretability, and computational demands. The findings suggest that while both models are highly effective for water depth inversion, ongoing improvements in data handling and model transparency are essential for their broader application in environmental monitoring. This research contributes to the understanding of AI capabilities in geospatial analysis and sets the stage for future enhancements in the field.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
12.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信