{"title":"MELCOR 2.2 iPWR LOCA 类型事故分析,第 II 部分:BDBA","authors":"M. Malicki, T. Lind","doi":"10.1016/j.nucengdes.2024.113667","DOIUrl":null,"url":null,"abstract":"<div><div>The integrated Pressurized Water Reactor brings many potential improvements for the nuclear industry, such as passive and modular design, which potentially supports reliability and safety. Besides their advantages, passive systems are also more challenging to simulate, and predictions of the complex behavior of the reactor, especially under accident conditions, need to be validated. In the first part of this study, the authors analyzed the thermal-hydraulic response of the iPWR to several design basis accident sequences without entering into the severe accident domain. As a continuation of the investigation, a sensitivity study of the beyond design basis accident scenario was performed and analyzed as described and presented here, part 2 of the study.</div><div>A generic iPWR MELCOR 2.2 input deck was developed and used to perform a loss-of-coolant accident (LOCA)-type scenario analysis in which a break is assumed in the chemical and volume control system line. The effect of the elevation of the break and decay heat on accident progression is investigated. This allows the examination of input deck and code reliability under different conditions, from full core uncovery to mitigated accidents. Overall, eight cases were calculated in which the break elevation and decay heat were varied, providing knowledge about the modeling of the iPWR design and potential analytical challenges, which was the main goal of this work.</div><div>The analyses show that MELCOR 2.2 can model iPWR design and simulate severe accident scenarios with different levels of core degradation. One of the technical <u>insights</u> from this preliminary study was that natural circulation plays a significant role in the late phase of a severe accident when the core is uncovered.</div></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MELCOR 2.2 iPWR LOCA type accident analysis, PART II: BDBA\",\"authors\":\"M. Malicki, T. Lind\",\"doi\":\"10.1016/j.nucengdes.2024.113667\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The integrated Pressurized Water Reactor brings many potential improvements for the nuclear industry, such as passive and modular design, which potentially supports reliability and safety. Besides their advantages, passive systems are also more challenging to simulate, and predictions of the complex behavior of the reactor, especially under accident conditions, need to be validated. In the first part of this study, the authors analyzed the thermal-hydraulic response of the iPWR to several design basis accident sequences without entering into the severe accident domain. As a continuation of the investigation, a sensitivity study of the beyond design basis accident scenario was performed and analyzed as described and presented here, part 2 of the study.</div><div>A generic iPWR MELCOR 2.2 input deck was developed and used to perform a loss-of-coolant accident (LOCA)-type scenario analysis in which a break is assumed in the chemical and volume control system line. The effect of the elevation of the break and decay heat on accident progression is investigated. This allows the examination of input deck and code reliability under different conditions, from full core uncovery to mitigated accidents. Overall, eight cases were calculated in which the break elevation and decay heat were varied, providing knowledge about the modeling of the iPWR design and potential analytical challenges, which was the main goal of this work.</div><div>The analyses show that MELCOR 2.2 can model iPWR design and simulate severe accident scenarios with different levels of core degradation. One of the technical <u>insights</u> from this preliminary study was that natural circulation plays a significant role in the late phase of a severe accident when the core is uncovered.</div></div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0029549324007672\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0029549324007672","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
MELCOR 2.2 iPWR LOCA type accident analysis, PART II: BDBA
The integrated Pressurized Water Reactor brings many potential improvements for the nuclear industry, such as passive and modular design, which potentially supports reliability and safety. Besides their advantages, passive systems are also more challenging to simulate, and predictions of the complex behavior of the reactor, especially under accident conditions, need to be validated. In the first part of this study, the authors analyzed the thermal-hydraulic response of the iPWR to several design basis accident sequences without entering into the severe accident domain. As a continuation of the investigation, a sensitivity study of the beyond design basis accident scenario was performed and analyzed as described and presented here, part 2 of the study.
A generic iPWR MELCOR 2.2 input deck was developed and used to perform a loss-of-coolant accident (LOCA)-type scenario analysis in which a break is assumed in the chemical and volume control system line. The effect of the elevation of the break and decay heat on accident progression is investigated. This allows the examination of input deck and code reliability under different conditions, from full core uncovery to mitigated accidents. Overall, eight cases were calculated in which the break elevation and decay heat were varied, providing knowledge about the modeling of the iPWR design and potential analytical challenges, which was the main goal of this work.
The analyses show that MELCOR 2.2 can model iPWR design and simulate severe accident scenarios with different levels of core degradation. One of the technical insights from this preliminary study was that natural circulation plays a significant role in the late phase of a severe accident when the core is uncovered.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.