海事跟踪数据分析并与 AISdb 集成

IF 2.4 4区 计算机科学 Q2 COMPUTER SCIENCE, SOFTWARE ENGINEERING
Gabriel Spadon , Jay Kumar , Jinkun Chen , Matthew Smith , Casey Hilliard , Sarah Vela , Romina Gehrmann , Claudio DiBacco , Stan Matwin , Ronald Pelot
{"title":"海事跟踪数据分析并与 AISdb 集成","authors":"Gabriel Spadon ,&nbsp;Jay Kumar ,&nbsp;Jinkun Chen ,&nbsp;Matthew Smith ,&nbsp;Casey Hilliard ,&nbsp;Sarah Vela ,&nbsp;Romina Gehrmann ,&nbsp;Claudio DiBacco ,&nbsp;Stan Matwin ,&nbsp;Ronald Pelot","doi":"10.1016/j.softx.2024.101952","DOIUrl":null,"url":null,"abstract":"<div><div>Efficiently handling Automatic Identification System (AIS) data is vital for enhancing maritime safety and navigation, yet is hindered by the system’s high volume and error-prone datasets. This paper introduces the Automatic Identification System Database (AISdb), a novel tool designed to address the challenges of processing and analyzing AIS data. AISdb is a comprehensive, open-source platform that enables the integration of AIS data with environmental datasets, thus enriching analyses of vessel movements and their environmental impacts. By facilitating AIS data collection, cleaning, and spatio-temporal querying, AISdb significantly advances AIS data research. Utilizing AIS data from various sources, AISdb demonstrates improved handling and analysis of vessel information, contributing to enhancing maritime safety, security, and environmental sustainability efforts.</div></div>","PeriodicalId":21905,"journal":{"name":"SoftwareX","volume":"28 ","pages":"Article 101952"},"PeriodicalIF":2.4000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Maritime tracking data analysis and integration with AISdb\",\"authors\":\"Gabriel Spadon ,&nbsp;Jay Kumar ,&nbsp;Jinkun Chen ,&nbsp;Matthew Smith ,&nbsp;Casey Hilliard ,&nbsp;Sarah Vela ,&nbsp;Romina Gehrmann ,&nbsp;Claudio DiBacco ,&nbsp;Stan Matwin ,&nbsp;Ronald Pelot\",\"doi\":\"10.1016/j.softx.2024.101952\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Efficiently handling Automatic Identification System (AIS) data is vital for enhancing maritime safety and navigation, yet is hindered by the system’s high volume and error-prone datasets. This paper introduces the Automatic Identification System Database (AISdb), a novel tool designed to address the challenges of processing and analyzing AIS data. AISdb is a comprehensive, open-source platform that enables the integration of AIS data with environmental datasets, thus enriching analyses of vessel movements and their environmental impacts. By facilitating AIS data collection, cleaning, and spatio-temporal querying, AISdb significantly advances AIS data research. Utilizing AIS data from various sources, AISdb demonstrates improved handling and analysis of vessel information, contributing to enhancing maritime safety, security, and environmental sustainability efforts.</div></div>\",\"PeriodicalId\":21905,\"journal\":{\"name\":\"SoftwareX\",\"volume\":\"28 \",\"pages\":\"Article 101952\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SoftwareX\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352711024003224\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SoftwareX","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352711024003224","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

有效处理自动识别系统(AIS)数据对提高海上安全和航行至关重要,但该系统的数据集数量大且容易出错,这阻碍了数据的处理。本文介绍了自动识别系统数据库 (AISdb),这是一个新颖的工具,旨在应对处理和分析 AIS 数据的挑战。AISdb 是一个全面的开源平台,可将 AIS 数据与环境数据集整合在一起,从而丰富对船舶移动及其环境影响的分析。通过促进 AIS 数据的收集、清理和时空查询,AISdb 极大地推动了 AIS 数据研究。AISdb 利用各种来源的 AIS 数据,改进了对船只信息的处理和分析,有助于加强海事安全、安保和环境可持续发展工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Maritime tracking data analysis and integration with AISdb
Efficiently handling Automatic Identification System (AIS) data is vital for enhancing maritime safety and navigation, yet is hindered by the system’s high volume and error-prone datasets. This paper introduces the Automatic Identification System Database (AISdb), a novel tool designed to address the challenges of processing and analyzing AIS data. AISdb is a comprehensive, open-source platform that enables the integration of AIS data with environmental datasets, thus enriching analyses of vessel movements and their environmental impacts. By facilitating AIS data collection, cleaning, and spatio-temporal querying, AISdb significantly advances AIS data research. Utilizing AIS data from various sources, AISdb demonstrates improved handling and analysis of vessel information, contributing to enhancing maritime safety, security, and environmental sustainability efforts.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
SoftwareX
SoftwareX COMPUTER SCIENCE, SOFTWARE ENGINEERING-
CiteScore
5.50
自引率
2.90%
发文量
184
审稿时长
9 weeks
期刊介绍: SoftwareX aims to acknowledge the impact of software on today''s research practice, and on new scientific discoveries in almost all research domains. SoftwareX also aims to stress the importance of the software developers who are, in part, responsible for this impact. To this end, SoftwareX aims to support publication of research software in such a way that: The software is given a stamp of scientific relevance, and provided with a peer-reviewed recognition of scientific impact; The software developers are given the credits they deserve; The software is citable, allowing traditional metrics of scientific excellence to apply; The academic career paths of software developers are supported rather than hindered; The software is publicly available for inspection, validation, and re-use. Above all, SoftwareX aims to inform researchers about software applications, tools and libraries with a (proven) potential to impact the process of scientific discovery in various domains. The journal is multidisciplinary and accepts submissions from within and across subject domains such as those represented within the broad thematic areas below: Mathematical and Physical Sciences; Environmental Sciences; Medical and Biological Sciences; Humanities, Arts and Social Sciences. Originating from these broad thematic areas, the journal also welcomes submissions of software that works in cross cutting thematic areas, such as citizen science, cybersecurity, digital economy, energy, global resource stewardship, health and wellbeing, etcetera. SoftwareX specifically aims to accept submissions representing domain-independent software that may impact more than one research domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信