Yun Hu , Zhihui Chen , Jiangjing Xi , Jun Jiang , Filippo Berto , Kamran Nikbin
{"title":"基于缺陷特征的添加剂制造 Ti-6Al-4 V 合金低循环疲劳寿命预测模型","authors":"Yun Hu , Zhihui Chen , Jiangjing Xi , Jun Jiang , Filippo Berto , Kamran Nikbin","doi":"10.1016/j.tafmec.2024.104737","DOIUrl":null,"url":null,"abstract":"<div><div>Volumetric defect is a significant factor that influences the fatigue life assessment accuracy in additive manufactured (AM) metals. In order to accurately assess the effects of volumetric defects on fatigue property of AM alloys, this study investigates the influence of geometric characteristics such as size, location, and shape of volumetric defects on low-cycle fatigue (LCF) properties. The results indicate that these factors have a significant influence on the fatigue life of material, and the volumetric defect location is found to be the most critical factor. In order to identify the critical volumetric defects on the fatigue fracture, a defect characteristic parameter “<em>P</em>” is proposed to characterize the influence of volumetric defect characteristics on the fatigue performance of material. Subsequently, a low-cycle fatigue life prediction model for AM metals that considers the geometrical characteristics of volumetric defects is established based on the relationship between <em>P</em>-parameter and low-cycle fatigue life. The accuracy of the prediction model is within 1.5x error band, which is significantly improved compared to the Manson-Coffin (M−C) model and Smith-Watson-Topper (SWT) model.</div></div>","PeriodicalId":22879,"journal":{"name":"Theoretical and Applied Fracture Mechanics","volume":"134 ","pages":"Article 104737"},"PeriodicalIF":5.0000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Defect characteristics-based low-cycle fatigue life prediction model for additive manufactured Ti-6Al-4 V alloys\",\"authors\":\"Yun Hu , Zhihui Chen , Jiangjing Xi , Jun Jiang , Filippo Berto , Kamran Nikbin\",\"doi\":\"10.1016/j.tafmec.2024.104737\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Volumetric defect is a significant factor that influences the fatigue life assessment accuracy in additive manufactured (AM) metals. In order to accurately assess the effects of volumetric defects on fatigue property of AM alloys, this study investigates the influence of geometric characteristics such as size, location, and shape of volumetric defects on low-cycle fatigue (LCF) properties. The results indicate that these factors have a significant influence on the fatigue life of material, and the volumetric defect location is found to be the most critical factor. In order to identify the critical volumetric defects on the fatigue fracture, a defect characteristic parameter “<em>P</em>” is proposed to characterize the influence of volumetric defect characteristics on the fatigue performance of material. Subsequently, a low-cycle fatigue life prediction model for AM metals that considers the geometrical characteristics of volumetric defects is established based on the relationship between <em>P</em>-parameter and low-cycle fatigue life. The accuracy of the prediction model is within 1.5x error band, which is significantly improved compared to the Manson-Coffin (M−C) model and Smith-Watson-Topper (SWT) model.</div></div>\",\"PeriodicalId\":22879,\"journal\":{\"name\":\"Theoretical and Applied Fracture Mechanics\",\"volume\":\"134 \",\"pages\":\"Article 104737\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theoretical and Applied Fracture Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167844224004877\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical and Applied Fracture Mechanics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167844224004877","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
摘要
体积缺陷是影响增材制造(AM)金属疲劳寿命评估精度的一个重要因素。为了准确评估体积缺陷对 AM 合金疲劳性能的影响,本研究调查了体积缺陷的尺寸、位置和形状等几何特征对低循环疲劳(LCF)性能的影响。结果表明,这些因素对材料的疲劳寿命有显著影响,其中体积缺陷位置是最关键的因素。为了识别影响疲劳断裂的关键体积缺陷,提出了一个缺陷特征参数 "P "来表征体积缺陷特征对材料疲劳性能的影响。随后,根据 P 参数与低循环疲劳寿命之间的关系,建立了考虑了体积缺陷几何特征的 AM 金属低循环疲劳寿命预测模型。该预测模型的准确度在 1.5 倍误差范围内,与 Manson-Coffin (M-C) 模型和 Smith-Watson-Topper (SWT) 模型相比有显著提高。
Defect characteristics-based low-cycle fatigue life prediction model for additive manufactured Ti-6Al-4 V alloys
Volumetric defect is a significant factor that influences the fatigue life assessment accuracy in additive manufactured (AM) metals. In order to accurately assess the effects of volumetric defects on fatigue property of AM alloys, this study investigates the influence of geometric characteristics such as size, location, and shape of volumetric defects on low-cycle fatigue (LCF) properties. The results indicate that these factors have a significant influence on the fatigue life of material, and the volumetric defect location is found to be the most critical factor. In order to identify the critical volumetric defects on the fatigue fracture, a defect characteristic parameter “P” is proposed to characterize the influence of volumetric defect characteristics on the fatigue performance of material. Subsequently, a low-cycle fatigue life prediction model for AM metals that considers the geometrical characteristics of volumetric defects is established based on the relationship between P-parameter and low-cycle fatigue life. The accuracy of the prediction model is within 1.5x error band, which is significantly improved compared to the Manson-Coffin (M−C) model and Smith-Watson-Topper (SWT) model.
期刊介绍:
Theoretical and Applied Fracture Mechanics'' aims & scopes have been re-designed to cover both the theoretical, applied, and numerical aspects associated with those cracking related phenomena taking place, at a micro-, meso-, and macroscopic level, in materials/components/structures of any kind.
The journal aims to cover the cracking/mechanical behaviour of materials/components/structures in those situations involving both time-independent and time-dependent system of external forces/moments (such as, for instance, quasi-static, impulsive, impact, blasting, creep, contact, and fatigue loading). Since, under the above circumstances, the mechanical behaviour of cracked materials/components/structures is also affected by the environmental conditions, the journal would consider also those theoretical/experimental research works investigating the effect of external variables such as, for instance, the effect of corrosive environments as well as of high/low-temperature.