{"title":"基于三磁结的有效自旋滤波器和二极管","authors":"M. Wilczyński, K. Zberecki, M. Wierzbicki","doi":"10.1016/j.jmmm.2024.172635","DOIUrl":null,"url":null,"abstract":"<div><div>The charge current flowing through the triple junction composed of ferromagnetic external electrodes and inner layers of different thickness separated by three non-magnetic barriers is analysed in four colinear magnetic configurations. The thickness of the inner layers and the bias voltage can be set in such a way that the junction can act as a tunnel diode with current flowing effectively in one specific direction. The diode properties of the junction can be adjusted by a change of relative orientation of magnetic moments in the inner layers and electrodes; especially the junction can act as a diode in only one magnetic configuration. Magnetic configuration switching can also reverse the direction of the flow of tunnel current.</div></div>","PeriodicalId":366,"journal":{"name":"Journal of Magnetism and Magnetic Materials","volume":"611 ","pages":"Article 172635"},"PeriodicalIF":2.5000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effective spin filter and diode based on triple magnetic junction\",\"authors\":\"M. Wilczyński, K. Zberecki, M. Wierzbicki\",\"doi\":\"10.1016/j.jmmm.2024.172635\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The charge current flowing through the triple junction composed of ferromagnetic external electrodes and inner layers of different thickness separated by three non-magnetic barriers is analysed in four colinear magnetic configurations. The thickness of the inner layers and the bias voltage can be set in such a way that the junction can act as a tunnel diode with current flowing effectively in one specific direction. The diode properties of the junction can be adjusted by a change of relative orientation of magnetic moments in the inner layers and electrodes; especially the junction can act as a diode in only one magnetic configuration. Magnetic configuration switching can also reverse the direction of the flow of tunnel current.</div></div>\",\"PeriodicalId\":366,\"journal\":{\"name\":\"Journal of Magnetism and Magnetic Materials\",\"volume\":\"611 \",\"pages\":\"Article 172635\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Magnetism and Magnetic Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304885324009260\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Magnetism and Magnetic Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304885324009260","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Effective spin filter and diode based on triple magnetic junction
The charge current flowing through the triple junction composed of ferromagnetic external electrodes and inner layers of different thickness separated by three non-magnetic barriers is analysed in four colinear magnetic configurations. The thickness of the inner layers and the bias voltage can be set in such a way that the junction can act as a tunnel diode with current flowing effectively in one specific direction. The diode properties of the junction can be adjusted by a change of relative orientation of magnetic moments in the inner layers and electrodes; especially the junction can act as a diode in only one magnetic configuration. Magnetic configuration switching can also reverse the direction of the flow of tunnel current.
期刊介绍:
The Journal of Magnetism and Magnetic Materials provides an important forum for the disclosure and discussion of original contributions covering the whole spectrum of topics, from basic magnetism to the technology and applications of magnetic materials. The journal encourages greater interaction between the basic and applied sub-disciplines of magnetism with comprehensive review articles, in addition to full-length contributions. In addition, other categories of contributions are welcome, including Critical Focused issues, Current Perspectives and Outreach to the General Public.
Main Categories:
Full-length articles:
Technically original research documents that report results of value to the communities that comprise the journal audience. The link between chemical, structural and microstructural properties on the one hand and magnetic properties on the other hand are encouraged.
In addition to general topics covering all areas of magnetism and magnetic materials, the full-length articles also include three sub-sections, focusing on Nanomagnetism, Spintronics and Applications.
The sub-section on Nanomagnetism contains articles on magnetic nanoparticles, nanowires, thin films, 2D materials and other nanoscale magnetic materials and their applications.
The sub-section on Spintronics contains articles on magnetoresistance, magnetoimpedance, magneto-optical phenomena, Micro-Electro-Mechanical Systems (MEMS), and other topics related to spin current control and magneto-transport phenomena. The sub-section on Applications display papers that focus on applications of magnetic materials. The applications need to show a connection to magnetism.
Review articles:
Review articles organize, clarify, and summarize existing major works in the areas covered by the Journal and provide comprehensive citations to the full spectrum of relevant literature.