多室反应扩散问题复合非连续 Galerkin 离散化的 GDSW 预处理器

IF 6.9 1区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY
Ngoc Mai Monica Huynh , Luca F. Pavarino , Simone Scacchi
{"title":"多室反应扩散问题复合非连续 Galerkin 离散化的 GDSW 预处理器","authors":"Ngoc Mai Monica Huynh ,&nbsp;Luca F. Pavarino ,&nbsp;Simone Scacchi","doi":"10.1016/j.cma.2024.117501","DOIUrl":null,"url":null,"abstract":"<div><div>The aim of the present work is to design, analyze theoretically, and test numerically, a generalized Dryja–Smith–Widlund (GDSW) preconditioner for composite Discontinuous Galerkin discretizations of multicompartment parabolic reaction–diffusion equations, where the solution can exhibit natural discontinuities across the domain. We prove that the resulting preconditioned operator for the solution of the discrete system arising at each time step converges with a scalable and quasi-optimal upper bound for the condition number. The GDSW preconditioner is then applied to the EMI (Extracellular - Membrane - Intracellular) reaction–diffusion system, recently proposed to model microscopically the spatiotemporal evolution of cardiac bioelectrical potentials. Numerical tests validate the scalability and quasi-optimality of the EMI-GDSW preconditioner, and investigate its robustness with respect to the time-step size as well as jumps in the diffusion coefficients.</div></div>","PeriodicalId":55222,"journal":{"name":"Computer Methods in Applied Mechanics and Engineering","volume":"433 ","pages":"Article 117501"},"PeriodicalIF":6.9000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"GDSW preconditioners for composite Discontinuous Galerkin discretizations of multicompartment reaction–diffusion problems\",\"authors\":\"Ngoc Mai Monica Huynh ,&nbsp;Luca F. Pavarino ,&nbsp;Simone Scacchi\",\"doi\":\"10.1016/j.cma.2024.117501\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The aim of the present work is to design, analyze theoretically, and test numerically, a generalized Dryja–Smith–Widlund (GDSW) preconditioner for composite Discontinuous Galerkin discretizations of multicompartment parabolic reaction–diffusion equations, where the solution can exhibit natural discontinuities across the domain. We prove that the resulting preconditioned operator for the solution of the discrete system arising at each time step converges with a scalable and quasi-optimal upper bound for the condition number. The GDSW preconditioner is then applied to the EMI (Extracellular - Membrane - Intracellular) reaction–diffusion system, recently proposed to model microscopically the spatiotemporal evolution of cardiac bioelectrical potentials. Numerical tests validate the scalability and quasi-optimality of the EMI-GDSW preconditioner, and investigate its robustness with respect to the time-step size as well as jumps in the diffusion coefficients.</div></div>\",\"PeriodicalId\":55222,\"journal\":{\"name\":\"Computer Methods in Applied Mechanics and Engineering\",\"volume\":\"433 \",\"pages\":\"Article 117501\"},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2024-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Methods in Applied Mechanics and Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0045782524007552\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Methods in Applied Mechanics and Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045782524007552","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本研究的目的是设计、理论分析和数值测试一种广义 Dryja-Smith-Widlund (GDSW) 预处理器,用于多室抛物面反应扩散方程的复合非连续 Galerkin 离散化,在这种情况下,解在整个域中会表现出自然的不连续性。我们证明,在每个时间步产生的离散系统解中,所产生的预处理算子以可扩展的准最优条件数上限收敛。然后,我们将 GDSW 预处理器应用于 EMI(细胞外-膜-细胞内)反应扩散系统,该系统最近被提出用于微观模拟心脏生物电位的时空演变。数值测试验证了 EMI-GDSW 前置条件器的可扩展性和准最优性,并研究了它在时间步长和扩散系数跳跃方面的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
GDSW preconditioners for composite Discontinuous Galerkin discretizations of multicompartment reaction–diffusion problems
The aim of the present work is to design, analyze theoretically, and test numerically, a generalized Dryja–Smith–Widlund (GDSW) preconditioner for composite Discontinuous Galerkin discretizations of multicompartment parabolic reaction–diffusion equations, where the solution can exhibit natural discontinuities across the domain. We prove that the resulting preconditioned operator for the solution of the discrete system arising at each time step converges with a scalable and quasi-optimal upper bound for the condition number. The GDSW preconditioner is then applied to the EMI (Extracellular - Membrane - Intracellular) reaction–diffusion system, recently proposed to model microscopically the spatiotemporal evolution of cardiac bioelectrical potentials. Numerical tests validate the scalability and quasi-optimality of the EMI-GDSW preconditioner, and investigate its robustness with respect to the time-step size as well as jumps in the diffusion coefficients.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
12.70
自引率
15.30%
发文量
719
审稿时长
44 days
期刊介绍: Computer Methods in Applied Mechanics and Engineering stands as a cornerstone in the realm of computational science and engineering. With a history spanning over five decades, the journal has been a key platform for disseminating papers on advanced mathematical modeling and numerical solutions. Interdisciplinary in nature, these contributions encompass mechanics, mathematics, computer science, and various scientific disciplines. The journal welcomes a broad range of computational methods addressing the simulation, analysis, and design of complex physical problems, making it a vital resource for researchers in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信