近邻移动的空间队列

IF 1 4区 计算机科学 Q4 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
B.R. Vinay Kumar , Lasse Leskelä
{"title":"近邻移动的空间队列","authors":"B.R. Vinay Kumar ,&nbsp;Lasse Leskelä","doi":"10.1016/j.peva.2024.102448","DOIUrl":null,"url":null,"abstract":"<div><div>This work studies queues in a Euclidean space. Consider <span><math><mi>N</mi></math></span> servers that are distributed uniformly in <span><math><msup><mrow><mrow><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></mrow></mrow><mrow><mi>d</mi></mrow></msup></math></span>. Customers arrive at the servers according to independent stationary processes. Upon arrival, they probabilistically decide whether to join the queue they arrived at, or shift to one of the nearest neighbours. Such shifting strategies affect the load on the servers, and may cause some of the servers to become overloaded. We derive a law of large numbers and a central limit theorem for the fraction of overloaded servers in the system as the total number of servers <span><math><mrow><mi>N</mi><mo>→</mo><mi>∞</mi></mrow></math></span>. Additionally, in the one-dimensional case (<span><math><mrow><mi>d</mi><mo>=</mo><mn>1</mn></mrow></math></span>), we evaluate the expected fraction of overloaded servers for any finite <span><math><mi>N</mi></math></span>. Numerical experiments are provided to support our theoretical results. Typical applications of the results include electric vehicles queueing at charging stations, and queues in airports or supermarkets.</div></div>","PeriodicalId":19964,"journal":{"name":"Performance Evaluation","volume":"166 ","pages":"Article 102448"},"PeriodicalIF":1.0000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spatial queues with nearest neighbour shifts\",\"authors\":\"B.R. Vinay Kumar ,&nbsp;Lasse Leskelä\",\"doi\":\"10.1016/j.peva.2024.102448\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This work studies queues in a Euclidean space. Consider <span><math><mi>N</mi></math></span> servers that are distributed uniformly in <span><math><msup><mrow><mrow><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></mrow></mrow><mrow><mi>d</mi></mrow></msup></math></span>. Customers arrive at the servers according to independent stationary processes. Upon arrival, they probabilistically decide whether to join the queue they arrived at, or shift to one of the nearest neighbours. Such shifting strategies affect the load on the servers, and may cause some of the servers to become overloaded. We derive a law of large numbers and a central limit theorem for the fraction of overloaded servers in the system as the total number of servers <span><math><mrow><mi>N</mi><mo>→</mo><mi>∞</mi></mrow></math></span>. Additionally, in the one-dimensional case (<span><math><mrow><mi>d</mi><mo>=</mo><mn>1</mn></mrow></math></span>), we evaluate the expected fraction of overloaded servers for any finite <span><math><mi>N</mi></math></span>. Numerical experiments are provided to support our theoretical results. Typical applications of the results include electric vehicles queueing at charging stations, and queues in airports or supermarkets.</div></div>\",\"PeriodicalId\":19964,\"journal\":{\"name\":\"Performance Evaluation\",\"volume\":\"166 \",\"pages\":\"Article 102448\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Performance Evaluation\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0166531624000531\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Performance Evaluation","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166531624000531","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

摘要

本作品研究欧几里得空间中的队列。考虑均匀分布在 [0,1]d 中的 N 台服务器。客户根据独立的静态过程到达服务器。到达后,他们以概率方式决定是加入他们到达的队列,还是转移到最近的邻近队列中。这种转移策略会影响服务器的负载,并可能导致某些服务器超载。我们推导出服务器总数 N→∞ 时,系统中超载服务器比例的大数定律和中心极限定理。此外,在一维情况下(d=1),我们评估了任何有限 N 的预期超载服务器分数。这些结果的典型应用包括电动汽车在充电站排队、机场或超市排队等。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Spatial queues with nearest neighbour shifts
This work studies queues in a Euclidean space. Consider N servers that are distributed uniformly in [0,1]d. Customers arrive at the servers according to independent stationary processes. Upon arrival, they probabilistically decide whether to join the queue they arrived at, or shift to one of the nearest neighbours. Such shifting strategies affect the load on the servers, and may cause some of the servers to become overloaded. We derive a law of large numbers and a central limit theorem for the fraction of overloaded servers in the system as the total number of servers N. Additionally, in the one-dimensional case (d=1), we evaluate the expected fraction of overloaded servers for any finite N. Numerical experiments are provided to support our theoretical results. Typical applications of the results include electric vehicles queueing at charging stations, and queues in airports or supermarkets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Performance Evaluation
Performance Evaluation 工程技术-计算机:理论方法
CiteScore
3.10
自引率
0.00%
发文量
20
审稿时长
24 days
期刊介绍: Performance Evaluation functions as a leading journal in the area of modeling, measurement, and evaluation of performance aspects of computing and communication systems. As such, it aims to present a balanced and complete view of the entire Performance Evaluation profession. Hence, the journal is interested in papers that focus on one or more of the following dimensions: -Define new performance evaluation tools, including measurement and monitoring tools as well as modeling and analytic techniques -Provide new insights into the performance of computing and communication systems -Introduce new application areas where performance evaluation tools can play an important role and creative new uses for performance evaluation tools. More specifically, common application areas of interest include the performance of: -Resource allocation and control methods and algorithms (e.g. routing and flow control in networks, bandwidth allocation, processor scheduling, memory management) -System architecture, design and implementation -Cognitive radio -VANETs -Social networks and media -Energy efficient ICT -Energy harvesting -Data centers -Data centric networks -System reliability -System tuning and capacity planning -Wireless and sensor networks -Autonomic and self-organizing systems -Embedded systems -Network science
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信