Yuntae Jeon , Dai Quoc Tran , Almo Senja Kulinan , Taeheon Kim , Minsoo Park , Seunghee Park
{"title":"基于视觉的运动预测,在实时多摄像头系统中保障建筑工人安全","authors":"Yuntae Jeon , Dai Quoc Tran , Almo Senja Kulinan , Taeheon Kim , Minsoo Park , Seunghee Park","doi":"10.1016/j.aei.2024.102898","DOIUrl":null,"url":null,"abstract":"<div><div>Ensuring worker safety on dynamic construction sites is a significant challenge, especially as it is crucial to immediately identify potential hazards and warn workers. Existing computer vision-based motion prediction methods often overlook the false negative issue caused by the noisy environments of construction sites, and treat tracking and trajectory prediction as disconnected processes. This study introduces MPSORT, a method that suggests trajectory prediction-based tracking with trajectory interpolation for vision-based automated safety monitoring. The proposed method predicts the future movements of construction workers and vehicles using multiple CCTV cameras, and localizes these predictions onto the construction site’s bird’s eye view (BEV) map. This enables to send the real-time warnings to workers in danger, preventing accidents such as collision, fall, and getting stuck. We evaluated the performance of our method in both object tracking and trajectory prediction tasks on dataset from multiple CCTV cameras on construction sites. The object tracking results show an approximate 10% increase in the number of tracked objects, and the trajectory prediction results indicate an ADE of 7.138 and an FDE of 12.493, reflecting improvements of more than 5% and 2% in ADE and FDE, respectively, compared to previous methods. Overall, these findings are significant for minimizing accidents and enhancing safety and efficiency on construction sites.</div></div>","PeriodicalId":50941,"journal":{"name":"Advanced Engineering Informatics","volume":"62 ","pages":"Article 102898"},"PeriodicalIF":8.0000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Vision-based motion prediction for construction workers safety in real-time multi-camera system\",\"authors\":\"Yuntae Jeon , Dai Quoc Tran , Almo Senja Kulinan , Taeheon Kim , Minsoo Park , Seunghee Park\",\"doi\":\"10.1016/j.aei.2024.102898\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Ensuring worker safety on dynamic construction sites is a significant challenge, especially as it is crucial to immediately identify potential hazards and warn workers. Existing computer vision-based motion prediction methods often overlook the false negative issue caused by the noisy environments of construction sites, and treat tracking and trajectory prediction as disconnected processes. This study introduces MPSORT, a method that suggests trajectory prediction-based tracking with trajectory interpolation for vision-based automated safety monitoring. The proposed method predicts the future movements of construction workers and vehicles using multiple CCTV cameras, and localizes these predictions onto the construction site’s bird’s eye view (BEV) map. This enables to send the real-time warnings to workers in danger, preventing accidents such as collision, fall, and getting stuck. We evaluated the performance of our method in both object tracking and trajectory prediction tasks on dataset from multiple CCTV cameras on construction sites. The object tracking results show an approximate 10% increase in the number of tracked objects, and the trajectory prediction results indicate an ADE of 7.138 and an FDE of 12.493, reflecting improvements of more than 5% and 2% in ADE and FDE, respectively, compared to previous methods. Overall, these findings are significant for minimizing accidents and enhancing safety and efficiency on construction sites.</div></div>\",\"PeriodicalId\":50941,\"journal\":{\"name\":\"Advanced Engineering Informatics\",\"volume\":\"62 \",\"pages\":\"Article 102898\"},\"PeriodicalIF\":8.0000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Engineering Informatics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1474034624005494\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Engineering Informatics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1474034624005494","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Vision-based motion prediction for construction workers safety in real-time multi-camera system
Ensuring worker safety on dynamic construction sites is a significant challenge, especially as it is crucial to immediately identify potential hazards and warn workers. Existing computer vision-based motion prediction methods often overlook the false negative issue caused by the noisy environments of construction sites, and treat tracking and trajectory prediction as disconnected processes. This study introduces MPSORT, a method that suggests trajectory prediction-based tracking with trajectory interpolation for vision-based automated safety monitoring. The proposed method predicts the future movements of construction workers and vehicles using multiple CCTV cameras, and localizes these predictions onto the construction site’s bird’s eye view (BEV) map. This enables to send the real-time warnings to workers in danger, preventing accidents such as collision, fall, and getting stuck. We evaluated the performance of our method in both object tracking and trajectory prediction tasks on dataset from multiple CCTV cameras on construction sites. The object tracking results show an approximate 10% increase in the number of tracked objects, and the trajectory prediction results indicate an ADE of 7.138 and an FDE of 12.493, reflecting improvements of more than 5% and 2% in ADE and FDE, respectively, compared to previous methods. Overall, these findings are significant for minimizing accidents and enhancing safety and efficiency on construction sites.
期刊介绍:
Advanced Engineering Informatics is an international Journal that solicits research papers with an emphasis on 'knowledge' and 'engineering applications'. The Journal seeks original papers that report progress in applying methods of engineering informatics. These papers should have engineering relevance and help provide a scientific base for more reliable, spontaneous, and creative engineering decision-making. Additionally, papers should demonstrate the science of supporting knowledge-intensive engineering tasks and validate the generality, power, and scalability of new methods through rigorous evaluation, preferably both qualitatively and quantitatively. Abstracting and indexing for Advanced Engineering Informatics include Science Citation Index Expanded, Scopus and INSPEC.