多分段法的效率

J.S.C. Prentice
{"title":"多分段法的效率","authors":"J.S.C. Prentice","doi":"10.1016/j.jcmds.2024.100106","DOIUrl":null,"url":null,"abstract":"<div><div>We study the efficiency of the multisection method for univariate nonlinear equations, relative to that for the well-known bisection method. We show that there is a minimal effort algorithm that uses more sections than the bisection method, although this optimal algorithm is problem dependent. The number of sections required for optimality is determined by means of a Lambert <em>W</em> function.</div></div>","PeriodicalId":100768,"journal":{"name":"Journal of Computational Mathematics and Data Science","volume":"13 ","pages":"Article 100106"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficiency of the multisection method\",\"authors\":\"J.S.C. Prentice\",\"doi\":\"10.1016/j.jcmds.2024.100106\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We study the efficiency of the multisection method for univariate nonlinear equations, relative to that for the well-known bisection method. We show that there is a minimal effort algorithm that uses more sections than the bisection method, although this optimal algorithm is problem dependent. The number of sections required for optimality is determined by means of a Lambert <em>W</em> function.</div></div>\",\"PeriodicalId\":100768,\"journal\":{\"name\":\"Journal of Computational Mathematics and Data Science\",\"volume\":\"13 \",\"pages\":\"Article 100106\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational Mathematics and Data Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772415824000178\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Mathematics and Data Science","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772415824000178","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了单变量非线性方程的多分段法与著名的分段法相比的效率。我们的研究表明,有一种最省力的算法可以使用比分段法更多的分段,尽管这种最优算法与问题有关。最优化所需的截面数是通过兰伯特 W 函数确定的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Efficiency of the multisection method
We study the efficiency of the multisection method for univariate nonlinear equations, relative to that for the well-known bisection method. We show that there is a minimal effort algorithm that uses more sections than the bisection method, although this optimal algorithm is problem dependent. The number of sections required for optimality is determined by means of a Lambert W function.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信