Per Niklas Hedde, Songning Zhu, Barbara Barylko, Chi-Li Chiu, Luke T. Nelson, Michelle A. Digman, Joseph P. Albanesi, Nicholas G. James* and David M. Jameson*,
{"title":"致病突变对活细胞中高阶 Dynamin 2 组装形成的影响","authors":"Per Niklas Hedde, Songning Zhu, Barbara Barylko, Chi-Li Chiu, Luke T. Nelson, Michelle A. Digman, Joseph P. Albanesi, Nicholas G. James* and David M. Jameson*, ","doi":"10.1021/acs.biochem.4c0026210.1021/acs.biochem.4c00262","DOIUrl":null,"url":null,"abstract":"<p >Mutations in dynamin 2 (DNM2) have been associated with two distinct movement disorders: Charcot-Marie-Tooth neuropathies (CMT) and centronuclear myopathy (CNM). Most of these mutations are clustered in the pleckstrin homology domain (PHD), which engages in intramolecular interactions that limit dynamin self-assembly and GTPase activation. CNM mutations interfere with these intramolecular interactions and suppress the formation of the autoinhibited state. CMT mutations are located primarily on the opposite surface of the PHD, which is specialized for phosphoinositide binding. It has been speculated that the distinct locations and interactions of residues mutated in CMT and CNM explain why each set of mutations causes either one disease or the other, despite their close proximity within the PHD sequence. We previously reported that at least one CMT-causing mutant, lacking residues <sub>555</sub>DEE<sub>557</sub> (ΔDEE), displays the same inability to undergo autoinhibition as observed in CNM-linked mutants. Here, we show that both the DNM2<sup>ΔDEE</sup> and CNM-linked DNM2<sup>A618T</sup> mutants form larger and more stable structures on the plasma membrane than that of wild-type DNM2 (DNM2<sup>WT</sup>). However, DNM2<sup>A618T</sup> forms cytoplasmic inclusions at concentrations lower than those of either DNM2<sup>WT</sup> or DNM2<sup>ΔDEE</sup>, suggesting that CNM-linked mutations confer more severe gain-of-function properties than the ΔDEE mutation.</p>","PeriodicalId":28,"journal":{"name":"Biochemistry Biochemistry","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of Pathogenic Mutations on the Formation of High-Order Dynamin 2 Assemblies in Living Cells\",\"authors\":\"Per Niklas Hedde, Songning Zhu, Barbara Barylko, Chi-Li Chiu, Luke T. Nelson, Michelle A. Digman, Joseph P. Albanesi, Nicholas G. James* and David M. Jameson*, \",\"doi\":\"10.1021/acs.biochem.4c0026210.1021/acs.biochem.4c00262\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Mutations in dynamin 2 (DNM2) have been associated with two distinct movement disorders: Charcot-Marie-Tooth neuropathies (CMT) and centronuclear myopathy (CNM). Most of these mutations are clustered in the pleckstrin homology domain (PHD), which engages in intramolecular interactions that limit dynamin self-assembly and GTPase activation. CNM mutations interfere with these intramolecular interactions and suppress the formation of the autoinhibited state. CMT mutations are located primarily on the opposite surface of the PHD, which is specialized for phosphoinositide binding. It has been speculated that the distinct locations and interactions of residues mutated in CMT and CNM explain why each set of mutations causes either one disease or the other, despite their close proximity within the PHD sequence. We previously reported that at least one CMT-causing mutant, lacking residues <sub>555</sub>DEE<sub>557</sub> (ΔDEE), displays the same inability to undergo autoinhibition as observed in CNM-linked mutants. Here, we show that both the DNM2<sup>ΔDEE</sup> and CNM-linked DNM2<sup>A618T</sup> mutants form larger and more stable structures on the plasma membrane than that of wild-type DNM2 (DNM2<sup>WT</sup>). However, DNM2<sup>A618T</sup> forms cytoplasmic inclusions at concentrations lower than those of either DNM2<sup>WT</sup> or DNM2<sup>ΔDEE</sup>, suggesting that CNM-linked mutations confer more severe gain-of-function properties than the ΔDEE mutation.</p>\",\"PeriodicalId\":28,\"journal\":{\"name\":\"Biochemistry Biochemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochemistry Biochemistry\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.biochem.4c00262\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemistry Biochemistry","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.biochem.4c00262","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Effect of Pathogenic Mutations on the Formation of High-Order Dynamin 2 Assemblies in Living Cells
Mutations in dynamin 2 (DNM2) have been associated with two distinct movement disorders: Charcot-Marie-Tooth neuropathies (CMT) and centronuclear myopathy (CNM). Most of these mutations are clustered in the pleckstrin homology domain (PHD), which engages in intramolecular interactions that limit dynamin self-assembly and GTPase activation. CNM mutations interfere with these intramolecular interactions and suppress the formation of the autoinhibited state. CMT mutations are located primarily on the opposite surface of the PHD, which is specialized for phosphoinositide binding. It has been speculated that the distinct locations and interactions of residues mutated in CMT and CNM explain why each set of mutations causes either one disease or the other, despite their close proximity within the PHD sequence. We previously reported that at least one CMT-causing mutant, lacking residues 555DEE557 (ΔDEE), displays the same inability to undergo autoinhibition as observed in CNM-linked mutants. Here, we show that both the DNM2ΔDEE and CNM-linked DNM2A618T mutants form larger and more stable structures on the plasma membrane than that of wild-type DNM2 (DNM2WT). However, DNM2A618T forms cytoplasmic inclusions at concentrations lower than those of either DNM2WT or DNM2ΔDEE, suggesting that CNM-linked mutations confer more severe gain-of-function properties than the ΔDEE mutation.
期刊介绍:
Biochemistry provides an international forum for publishing exceptional, rigorous, high-impact research across all of biological chemistry. This broad scope includes studies on the chemical, physical, mechanistic, and/or structural basis of biological or cell function, and encompasses the fields of chemical biology, synthetic biology, disease biology, cell biology, nucleic acid biology, neuroscience, structural biology, and biophysics. In addition to traditional Research Articles, Biochemistry also publishes Communications, Viewpoints, and Perspectives, as well as From the Bench articles that report new methods of particular interest to the biological chemistry community.