用灾难理论和热力学不稳定性预测晶体的同熔温度

IF 1.9 3区 材料科学 Q4 CHEMISTRY, PHYSICAL
{"title":"用灾难理论和热力学不稳定性预测晶体的同熔温度","authors":"","doi":"10.1016/j.calphad.2024.102761","DOIUrl":null,"url":null,"abstract":"<div><div>Melting temperature (<em>T</em><sub>m</sub>) is a crucial physical property of solids and plays an important role in the characterization of materials. Therefore, the capacity to predict <em>T</em><sub>m</sub> is a relevant issue for solid state sciences. This investigation aims i) to provide a theoretical basis for the link between catastrophe theory and thermodynamic instability; ii) to estimate <em>T</em><sub>m</sub> through the notion of “degenerate critical temperature” (<em>T</em><sub>d</sub>), related to (<em>P</em><sub>d</sub>,<em>V</em><sub>d</sub>,<em>T</em><sub>d</sub>), where <em>K</em><sub><em>T</em></sub> → 0 and the Gibbs function shows a <em>non</em>-Morse behaviour; iii) to compare predictions of (<em>P</em><sub>m</sub>,<em>T</em><sub>m</sub>) with observations for three crystalline pure substances that undergo congruent melting and exhibit different bonding and stability ranges: NaCl (halite), SiO<sub>2,st</sub> (stishovite), and MgSiO<sub>3</sub> (perovskite). The <em>P</em>-<em>T locus</em> of <em>K</em><sub><em>T</em></sub> = 0 associated with melting is identified using the maximum values of <em>T</em><sub>d</sub> and Δ<em>H</em>/Δ<em>V</em> at a given pressure. We observed an average absolute discrepancy ranging between 0.2 % (halite) and 5.8 % (stishovite), and an agreement between theoretical and experimental <em>T</em>(<em>P</em>)<sub>melting</sub>-points from better than 1 to approximately 14 %.</div></div>","PeriodicalId":9436,"journal":{"name":"Calphad-computer Coupling of Phase Diagrams and Thermochemistry","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Catastrophe theory and thermodynamic instability to predict congruent melting temperature of crystals\",\"authors\":\"\",\"doi\":\"10.1016/j.calphad.2024.102761\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Melting temperature (<em>T</em><sub>m</sub>) is a crucial physical property of solids and plays an important role in the characterization of materials. Therefore, the capacity to predict <em>T</em><sub>m</sub> is a relevant issue for solid state sciences. This investigation aims i) to provide a theoretical basis for the link between catastrophe theory and thermodynamic instability; ii) to estimate <em>T</em><sub>m</sub> through the notion of “degenerate critical temperature” (<em>T</em><sub>d</sub>), related to (<em>P</em><sub>d</sub>,<em>V</em><sub>d</sub>,<em>T</em><sub>d</sub>), where <em>K</em><sub><em>T</em></sub> → 0 and the Gibbs function shows a <em>non</em>-Morse behaviour; iii) to compare predictions of (<em>P</em><sub>m</sub>,<em>T</em><sub>m</sub>) with observations for three crystalline pure substances that undergo congruent melting and exhibit different bonding and stability ranges: NaCl (halite), SiO<sub>2,st</sub> (stishovite), and MgSiO<sub>3</sub> (perovskite). The <em>P</em>-<em>T locus</em> of <em>K</em><sub><em>T</em></sub> = 0 associated with melting is identified using the maximum values of <em>T</em><sub>d</sub> and Δ<em>H</em>/Δ<em>V</em> at a given pressure. We observed an average absolute discrepancy ranging between 0.2 % (halite) and 5.8 % (stishovite), and an agreement between theoretical and experimental <em>T</em>(<em>P</em>)<sub>melting</sub>-points from better than 1 to approximately 14 %.</div></div>\",\"PeriodicalId\":9436,\"journal\":{\"name\":\"Calphad-computer Coupling of Phase Diagrams and Thermochemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Calphad-computer Coupling of Phase Diagrams and Thermochemistry\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0364591624001032\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Calphad-computer Coupling of Phase Diagrams and Thermochemistry","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0364591624001032","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

熔融温度(Tm)是固体的一项关键物理特性,在材料表征中发挥着重要作用。因此,预测 Tm 的能力是固体科学的一个相关问题。这项研究旨在 i) 为灾难理论与热力学不稳定性之间的联系提供理论依据;ii) 通过与 (Pd,Vd,Td) 相关的 "退化临界温度"(Td)概念估算 Tm,其中 KT → 0 且吉布斯函数显示非莫氏行为;iii) 将 (Pm,Tm) 的预测结果与对三种晶体纯物质的观察结果进行比较,这三种物质会发生同熔,并表现出不同的键合和稳定性范围:NaCl(海绿石)、SiO2,st(石英)和 MgSiO3(透辉石)。利用给定压力下 Td 和 ΔH/ΔV 的最大值,确定了与熔化相关的 KT = 0 的 P-T 位置。我们观察到的平均绝对差异范围在 0.2 %(海泡石)和 5.8 %(菱锰矿)之间,理论和实验 T(P)熔点之间的一致性从优于 1 % 到大约 14 % 不等。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Catastrophe theory and thermodynamic instability to predict congruent melting temperature of crystals
Melting temperature (Tm) is a crucial physical property of solids and plays an important role in the characterization of materials. Therefore, the capacity to predict Tm is a relevant issue for solid state sciences. This investigation aims i) to provide a theoretical basis for the link between catastrophe theory and thermodynamic instability; ii) to estimate Tm through the notion of “degenerate critical temperature” (Td), related to (Pd,Vd,Td), where KT → 0 and the Gibbs function shows a non-Morse behaviour; iii) to compare predictions of (Pm,Tm) with observations for three crystalline pure substances that undergo congruent melting and exhibit different bonding and stability ranges: NaCl (halite), SiO2,st (stishovite), and MgSiO3 (perovskite). The P-T locus of KT = 0 associated with melting is identified using the maximum values of Td and ΔHV at a given pressure. We observed an average absolute discrepancy ranging between 0.2 % (halite) and 5.8 % (stishovite), and an agreement between theoretical and experimental T(P)melting-points from better than 1 to approximately 14 %.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.00
自引率
16.70%
发文量
94
审稿时长
2.5 months
期刊介绍: The design of industrial processes requires reliable thermodynamic data. CALPHAD (Computer Coupling of Phase Diagrams and Thermochemistry) aims to promote computational thermodynamics through development of models to represent thermodynamic properties for various phases which permit prediction of properties of multicomponent systems from those of binary and ternary subsystems, critical assessment of data and their incorporation into self-consistent databases, development of software to optimize and derive thermodynamic parameters and the development and use of databanks for calculations to improve understanding of various industrial and technological processes. This work is disseminated through the CALPHAD journal and its annual conference.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信