通过多个电极同时发挥作用优化三维食管肿瘤消融。

IF 2.6 4区 医学 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Hongying Wang, Jincheng Zou, Shiqing Zhao, Aili Zhang
{"title":"通过多个电极同时发挥作用优化三维食管肿瘤消融。","authors":"Hongying Wang, Jincheng Zou, Shiqing Zhao, Aili Zhang","doi":"10.1007/s11517-024-03230-9","DOIUrl":null,"url":null,"abstract":"<p><p>Radiofrequency ablation is a widely accepted minimal-invasive and effective local treatment for tumors. However, its current application in esophageal cancer treatment is limited to targeting thin and superficial lesions, such as Barrett's Esophagus. This study proposes an optimization method using multiple electrodes simultaneously to regulate the temperature field and achieve conformal ablation of tumors. A particle swarm optimization algorithm, coupled with a three-dimensional thermal ablation model, was developed to optimize the status of the functioning electrodes, the optimal voltage (V<sub>opt</sub>), and treatment duration (t<sub>tre</sub>) for targeted esophageal tumors. This approach takes into account both the electrical and thermal interactions of the electrodes. The results indicate that for esophageal cancers at various stages, with thickness (c) ranging from 4.5 mm to 10.0 mm, major axis (a) ranging from 7.3 mm to 27.3 mm, and minor axis (b) equaling 7.3 mm or 27.3 mm, as well as non-symmetrical geometries, complete tumor coverage (over 99.5%) close to conformal can be achieved. This method illustrates possible precise conformal ablation of esophageal cancers and it may also be used for conformal treatments of other intraluminal lesions.</p>","PeriodicalId":49840,"journal":{"name":"Medical & Biological Engineering & Computing","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimization of three-dimensional esophageal tumor ablation by simultaneous functioning of multiple electrodes.\",\"authors\":\"Hongying Wang, Jincheng Zou, Shiqing Zhao, Aili Zhang\",\"doi\":\"10.1007/s11517-024-03230-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Radiofrequency ablation is a widely accepted minimal-invasive and effective local treatment for tumors. However, its current application in esophageal cancer treatment is limited to targeting thin and superficial lesions, such as Barrett's Esophagus. This study proposes an optimization method using multiple electrodes simultaneously to regulate the temperature field and achieve conformal ablation of tumors. A particle swarm optimization algorithm, coupled with a three-dimensional thermal ablation model, was developed to optimize the status of the functioning electrodes, the optimal voltage (V<sub>opt</sub>), and treatment duration (t<sub>tre</sub>) for targeted esophageal tumors. This approach takes into account both the electrical and thermal interactions of the electrodes. The results indicate that for esophageal cancers at various stages, with thickness (c) ranging from 4.5 mm to 10.0 mm, major axis (a) ranging from 7.3 mm to 27.3 mm, and minor axis (b) equaling 7.3 mm or 27.3 mm, as well as non-symmetrical geometries, complete tumor coverage (over 99.5%) close to conformal can be achieved. This method illustrates possible precise conformal ablation of esophageal cancers and it may also be used for conformal treatments of other intraluminal lesions.</p>\",\"PeriodicalId\":49840,\"journal\":{\"name\":\"Medical & Biological Engineering & Computing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Medical & Biological Engineering & Computing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s11517-024-03230-9\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical & Biological Engineering & Computing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11517-024-03230-9","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

射频消融是一种被广泛接受的微创、有效的局部肿瘤治疗方法。然而,目前其在食管癌治疗中的应用仅限于针对薄而浅的病灶,如巴雷特食管。本研究提出了一种同时使用多个电极来调节温度场并实现肿瘤保形消融的优化方法。粒子群优化算法与三维热消融模型相结合,可优化功能电极的状态、最佳电压(Vopt)和针对食管肿瘤的治疗持续时间(ttre)。这种方法同时考虑了电极的电相互作用和热相互作用。结果表明,对于处于不同阶段的食管癌,厚度(c)从 4.5 毫米到 10.0 毫米不等,主轴(a)从 7.3 毫米到 27.3 毫米不等,小轴(b)等于 7.3 毫米或 27.3 毫米,以及非对称几何形状,都能实现接近保形的完全肿瘤覆盖(超过 99.5%)。这种方法说明了精确适形消融食管癌的可能性,也可用于其他腔内病变的适形治疗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimization of three-dimensional esophageal tumor ablation by simultaneous functioning of multiple electrodes.

Radiofrequency ablation is a widely accepted minimal-invasive and effective local treatment for tumors. However, its current application in esophageal cancer treatment is limited to targeting thin and superficial lesions, such as Barrett's Esophagus. This study proposes an optimization method using multiple electrodes simultaneously to regulate the temperature field and achieve conformal ablation of tumors. A particle swarm optimization algorithm, coupled with a three-dimensional thermal ablation model, was developed to optimize the status of the functioning electrodes, the optimal voltage (Vopt), and treatment duration (ttre) for targeted esophageal tumors. This approach takes into account both the electrical and thermal interactions of the electrodes. The results indicate that for esophageal cancers at various stages, with thickness (c) ranging from 4.5 mm to 10.0 mm, major axis (a) ranging from 7.3 mm to 27.3 mm, and minor axis (b) equaling 7.3 mm or 27.3 mm, as well as non-symmetrical geometries, complete tumor coverage (over 99.5%) close to conformal can be achieved. This method illustrates possible precise conformal ablation of esophageal cancers and it may also be used for conformal treatments of other intraluminal lesions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Medical & Biological Engineering & Computing
Medical & Biological Engineering & Computing 医学-工程:生物医学
CiteScore
6.00
自引率
3.10%
发文量
249
审稿时长
3.5 months
期刊介绍: Founded in 1963, Medical & Biological Engineering & Computing (MBEC) continues to serve the biomedical engineering community, covering the entire spectrum of biomedical and clinical engineering. The journal presents exciting and vital experimental and theoretical developments in biomedical science and technology, and reports on advances in computer-based methodologies in these multidisciplinary subjects. The journal also incorporates new and evolving technologies including cellular engineering and molecular imaging. MBEC publishes original research articles as well as reviews and technical notes. Its Rapid Communications category focuses on material of immediate value to the readership, while the Controversies section provides a forum to exchange views on selected issues, stimulating a vigorous and informed debate in this exciting and high profile field. MBEC is an official journal of the International Federation of Medical and Biological Engineering (IFMBE).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信