根据大量 DNA 甲基化估计的肿瘤纯度可用于调整单个样本的 beta 值,以更好地反映肿瘤生物学特性。

IF 4 Q1 GENETICS & HEREDITY
NAR Genomics and Bioinformatics Pub Date : 2024-11-04 eCollection Date: 2024-09-01 DOI:10.1093/nargab/lqae146
Iñaki Sasiain, Deborah F Nacer, Mattias Aine, Srinivas Veerla, Johan Staaf
{"title":"根据大量 DNA 甲基化估计的肿瘤纯度可用于调整单个样本的 beta 值,以更好地反映肿瘤生物学特性。","authors":"Iñaki Sasiain, Deborah F Nacer, Mattias Aine, Srinivas Veerla, Johan Staaf","doi":"10.1093/nargab/lqae146","DOIUrl":null,"url":null,"abstract":"<p><p>Epigenetic deregulation through altered DNA methylation is a fundamental feature of tumorigenesis, but tumor data from bulk tissue samples contain different proportions of malignant and non-malignant cells that may confound the interpretation of DNA methylation values. The adjustment of DNA methylation data based on tumor purity has been proposed to render both genome-wide and gene-specific analyses more precise, but it requires sample purity estimates. Here we present PureBeta, a single-sample statistical framework that uses genome-wide DNA methylation data to first estimate sample purity and then adjust methylation values of individual CpGs to correct for sample impurity. Purity values estimated with the algorithm have high correlation (>0.8) to reference values obtained from DNA sequencing when applied to samples from breast carcinoma, lung adenocarcinoma, and lung squamous cell carcinoma. Methylation beta values adjusted based on purity estimates have a more binary distribution that better reflects theoretical methylation states, thus facilitating improved biological inference as shown for <i>BRCA1</i> in breast cancer. PureBeta is a versatile tool that can be used for different Illumina DNA methylation arrays and can be applied to individual samples of different cancer types to enhance biological interpretability of methylation data.</p>","PeriodicalId":33994,"journal":{"name":"NAR Genomics and Bioinformatics","volume":"6 4","pages":"lqae146"},"PeriodicalIF":4.0000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11532792/pdf/","citationCount":"0","resultStr":"{\"title\":\"Tumor purity estimated from bulk DNA methylation can be used for adjusting beta values of individual samples to better reflect tumor biology.\",\"authors\":\"Iñaki Sasiain, Deborah F Nacer, Mattias Aine, Srinivas Veerla, Johan Staaf\",\"doi\":\"10.1093/nargab/lqae146\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Epigenetic deregulation through altered DNA methylation is a fundamental feature of tumorigenesis, but tumor data from bulk tissue samples contain different proportions of malignant and non-malignant cells that may confound the interpretation of DNA methylation values. The adjustment of DNA methylation data based on tumor purity has been proposed to render both genome-wide and gene-specific analyses more precise, but it requires sample purity estimates. Here we present PureBeta, a single-sample statistical framework that uses genome-wide DNA methylation data to first estimate sample purity and then adjust methylation values of individual CpGs to correct for sample impurity. Purity values estimated with the algorithm have high correlation (>0.8) to reference values obtained from DNA sequencing when applied to samples from breast carcinoma, lung adenocarcinoma, and lung squamous cell carcinoma. Methylation beta values adjusted based on purity estimates have a more binary distribution that better reflects theoretical methylation states, thus facilitating improved biological inference as shown for <i>BRCA1</i> in breast cancer. PureBeta is a versatile tool that can be used for different Illumina DNA methylation arrays and can be applied to individual samples of different cancer types to enhance biological interpretability of methylation data.</p>\",\"PeriodicalId\":33994,\"journal\":{\"name\":\"NAR Genomics and Bioinformatics\",\"volume\":\"6 4\",\"pages\":\"lqae146\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11532792/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NAR Genomics and Bioinformatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/nargab/lqae146\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/9/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NAR Genomics and Bioinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/nargab/lqae146","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

摘要

通过改变 DNA 甲基化实现表观遗传学失调是肿瘤发生的一个基本特征,但来自大量组织样本的肿瘤数据包含不同比例的恶性和非恶性细胞,这可能会混淆 DNA 甲基化值的解释。有人提出根据肿瘤纯度调整 DNA 甲基化数据,使全基因组和基因特异性分析更加精确,但这需要对样本纯度进行估计。在这里,我们介绍一种单样本统计框架 PureBeta,它使用全基因组 DNA 甲基化数据首先估算样本纯度,然后调整单个 CpGs 的甲基化值以校正样本不纯度。在应用于乳腺癌、肺腺癌和肺鳞癌样本时,用该算法估算的纯度值与 DNA 测序获得的参考值具有很高的相关性(>0.8)。根据纯度估计值调整的甲基化贝塔值具有更二元的分布,能更好地反映理论上的甲基化状态,从而有助于改进生物学推断,如乳腺癌中 BRCA1 的情况所示。PureBeta 是一种多功能工具,可用于不同的 Illumina DNA 甲基化阵列,并可应用于不同癌症类型的个体样本,以提高甲基化数据的生物学可解释性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tumor purity estimated from bulk DNA methylation can be used for adjusting beta values of individual samples to better reflect tumor biology.

Epigenetic deregulation through altered DNA methylation is a fundamental feature of tumorigenesis, but tumor data from bulk tissue samples contain different proportions of malignant and non-malignant cells that may confound the interpretation of DNA methylation values. The adjustment of DNA methylation data based on tumor purity has been proposed to render both genome-wide and gene-specific analyses more precise, but it requires sample purity estimates. Here we present PureBeta, a single-sample statistical framework that uses genome-wide DNA methylation data to first estimate sample purity and then adjust methylation values of individual CpGs to correct for sample impurity. Purity values estimated with the algorithm have high correlation (>0.8) to reference values obtained from DNA sequencing when applied to samples from breast carcinoma, lung adenocarcinoma, and lung squamous cell carcinoma. Methylation beta values adjusted based on purity estimates have a more binary distribution that better reflects theoretical methylation states, thus facilitating improved biological inference as shown for BRCA1 in breast cancer. PureBeta is a versatile tool that can be used for different Illumina DNA methylation arrays and can be applied to individual samples of different cancer types to enhance biological interpretability of methylation data.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.00
自引率
2.20%
发文量
95
审稿时长
15 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信