{"title":"使用一个基于效用的规则对 II 期试验进行贝叶斯安全性和有效性监测。","authors":"Juhee Lee, Peter F Thall","doi":"10.1002/sim.10254","DOIUrl":null,"url":null,"abstract":"<p><p>For phase II clinical trials that determine the acceptability of an experimental treatment based on ordinal toxicity and ordinal response, most monitoring methods require each ordinal outcome to be dichotomized using a selected cut-point. This allows two early stopping rules to be constructed that compare marginal probabilities of toxicity and response to respective upper and lower limits. Important problems with this approach are loss of information due to dichotomization, dependence of treatment acceptability decisions on precisely how each ordinal variable is dichotomized, and ignoring association between the two outcomes. To address these problems, we propose a new Bayesian method, which we call U-Bayes, that exploits elicited numerical utilities of the joint ordinal outcomes to construct one early stopping rule that compares the mean utility to a lower limit. U-Bayes avoids the problems noted above by using the entire joint distribution of the ordinal outcomes, and not dichotomizing the outcomes. A step-by-step algorithm is provided for constructing a U-Bayes rule based on elicited utilities and elicited limits on marginal outcome probabilities. A simulation study shows that U-Bayes greatly improves the probability of determining treatment acceptability compared to conventional designs that use two monitoring rules based on marginal probabilities.</p>","PeriodicalId":21879,"journal":{"name":"Statistics in Medicine","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bayesian Safety and Futility Monitoring in Phase II Trials Using One Utility-Based Rule.\",\"authors\":\"Juhee Lee, Peter F Thall\",\"doi\":\"10.1002/sim.10254\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>For phase II clinical trials that determine the acceptability of an experimental treatment based on ordinal toxicity and ordinal response, most monitoring methods require each ordinal outcome to be dichotomized using a selected cut-point. This allows two early stopping rules to be constructed that compare marginal probabilities of toxicity and response to respective upper and lower limits. Important problems with this approach are loss of information due to dichotomization, dependence of treatment acceptability decisions on precisely how each ordinal variable is dichotomized, and ignoring association between the two outcomes. To address these problems, we propose a new Bayesian method, which we call U-Bayes, that exploits elicited numerical utilities of the joint ordinal outcomes to construct one early stopping rule that compares the mean utility to a lower limit. U-Bayes avoids the problems noted above by using the entire joint distribution of the ordinal outcomes, and not dichotomizing the outcomes. A step-by-step algorithm is provided for constructing a U-Bayes rule based on elicited utilities and elicited limits on marginal outcome probabilities. A simulation study shows that U-Bayes greatly improves the probability of determining treatment acceptability compared to conventional designs that use two monitoring rules based on marginal probabilities.</p>\",\"PeriodicalId\":21879,\"journal\":{\"name\":\"Statistics in Medicine\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistics in Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/sim.10254\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics in Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/sim.10254","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
对于根据序数毒性和序数反应确定实验治疗可接受性的 II 期临床试验,大多数监测方法都要求使用选定的切点对每个序数结果进行二分。这样就可以构建两个早期停止规则,将毒性和反应的边际概率与各自的上限和下限进行比较。这种方法存在的重要问题是,二分法会导致信息丢失,治疗可接受性决定取决于每个序数变量如何精确二分,以及忽略两个结果之间的关联。为了解决这些问题,我们提出了一种新的贝叶斯方法(我们称之为 U-Bayes),该方法利用所获得的联合序数结果的数值效用来构建一个早期停止规则,将平均效用与下限进行比较。U-Bayes 通过使用整个序数结果的联合分布,而不是将结果二分,从而避免了上述问题。本文提供了一种分步算法,用于根据激发的效用和激发的边际结果概率限制构建 U-Bayes 规则。一项模拟研究表明,与使用基于边际概率的两种监测规则的传统设计相比,U-贝叶斯法则大大提高了确定治疗可接受性的概率。
Bayesian Safety and Futility Monitoring in Phase II Trials Using One Utility-Based Rule.
For phase II clinical trials that determine the acceptability of an experimental treatment based on ordinal toxicity and ordinal response, most monitoring methods require each ordinal outcome to be dichotomized using a selected cut-point. This allows two early stopping rules to be constructed that compare marginal probabilities of toxicity and response to respective upper and lower limits. Important problems with this approach are loss of information due to dichotomization, dependence of treatment acceptability decisions on precisely how each ordinal variable is dichotomized, and ignoring association between the two outcomes. To address these problems, we propose a new Bayesian method, which we call U-Bayes, that exploits elicited numerical utilities of the joint ordinal outcomes to construct one early stopping rule that compares the mean utility to a lower limit. U-Bayes avoids the problems noted above by using the entire joint distribution of the ordinal outcomes, and not dichotomizing the outcomes. A step-by-step algorithm is provided for constructing a U-Bayes rule based on elicited utilities and elicited limits on marginal outcome probabilities. A simulation study shows that U-Bayes greatly improves the probability of determining treatment acceptability compared to conventional designs that use two monitoring rules based on marginal probabilities.
期刊介绍:
The journal aims to influence practice in medicine and its associated sciences through the publication of papers on statistical and other quantitative methods. Papers will explain new methods and demonstrate their application, preferably through a substantive, real, motivating example or a comprehensive evaluation based on an illustrative example. Alternatively, papers will report on case-studies where creative use or technical generalizations of established methodology is directed towards a substantive application. Reviews of, and tutorials on, general topics relevant to the application of statistics to medicine will also be published. The main criteria for publication are appropriateness of the statistical methods to a particular medical problem and clarity of exposition. Papers with primarily mathematical content will be excluded. The journal aims to enhance communication between statisticians, clinicians and medical researchers.