利用深度学习将多发性硬化症中的神经变性与衰老区分开来:大脑预测的疾病持续时间差距。

IF 7.7 1区 医学 Q1 CLINICAL NEUROLOGY
Neurology Pub Date : 2024-11-26 Epub Date: 2024-11-04 DOI:10.1212/WNL.0000000000209976
Giuseppe Pontillo, Ferran Prados, Jordan Colman, Baris Kanber, Omar Abdel-Mannan, Sarmad Al-Araji, Barbara Bellenberg, Alessia Bianchi, Alvino Bisecco, Wallace J Brownlee, Arturo Brunetti, Alessandro Cagol, Massimiliano Calabrese, Marco Castellaro, Ronja Christensen, Sirio Cocozza, Elisa Colato, Sara Collorone, Rosa Cortese, Nicola De Stefano, Christian Enzinger, Massimo Filippi, Michael A Foster, Antonio Gallo, Claudio Gasperini, Gabriel Gonzalez-Escamilla, Cristina Granziera, Sergiu Groppa, Yael Hacohen, Hanne F F Harbo, Anna He, Einar A Hogestol, Jens Kuhle, Sara Llufriu, Carsten Lukas, Eloy Martinez-Heras, Silvia Messina, Marcello Moccia, Suraya Mohamud, Riccardo Nistri, Gro O Nygaard, Jacqueline Palace, Maria Petracca, Daniela Pinter, Maria A Rocca, Alex Rovira, Serena Ruggieri, Jaume Sastre-Garriga, Eva M Strijbis, Ahmed T Toosy, Tomas Uher, Paola Valsasina, Manuela Vaneckova, Hugo Vrenken, Jed Wingrove, Charmaine Yam, Menno M Schoonheim, Olga Ciccarelli, James H Cole, Frederik Barkhof
{"title":"利用深度学习将多发性硬化症中的神经变性与衰老区分开来:大脑预测的疾病持续时间差距。","authors":"Giuseppe Pontillo, Ferran Prados, Jordan Colman, Baris Kanber, Omar Abdel-Mannan, Sarmad Al-Araji, Barbara Bellenberg, Alessia Bianchi, Alvino Bisecco, Wallace J Brownlee, Arturo Brunetti, Alessandro Cagol, Massimiliano Calabrese, Marco Castellaro, Ronja Christensen, Sirio Cocozza, Elisa Colato, Sara Collorone, Rosa Cortese, Nicola De Stefano, Christian Enzinger, Massimo Filippi, Michael A Foster, Antonio Gallo, Claudio Gasperini, Gabriel Gonzalez-Escamilla, Cristina Granziera, Sergiu Groppa, Yael Hacohen, Hanne F F Harbo, Anna He, Einar A Hogestol, Jens Kuhle, Sara Llufriu, Carsten Lukas, Eloy Martinez-Heras, Silvia Messina, Marcello Moccia, Suraya Mohamud, Riccardo Nistri, Gro O Nygaard, Jacqueline Palace, Maria Petracca, Daniela Pinter, Maria A Rocca, Alex Rovira, Serena Ruggieri, Jaume Sastre-Garriga, Eva M Strijbis, Ahmed T Toosy, Tomas Uher, Paola Valsasina, Manuela Vaneckova, Hugo Vrenken, Jed Wingrove, Charmaine Yam, Menno M Schoonheim, Olga Ciccarelli, James H Cole, Frederik Barkhof","doi":"10.1212/WNL.0000000000209976","DOIUrl":null,"url":null,"abstract":"<p><strong>Background and objectives: </strong>Disentangling brain aging from disease-related neurodegeneration in patients with multiple sclerosis (PwMS) is increasingly topical. The brain-age paradigm offers a window into this problem but may miss disease-specific effects. In this study, we investigated whether a disease-specific model might complement the brain-age gap (BAG) by capturing aspects unique to MS.</p><p><strong>Methods: </strong>In this retrospective study, we collected 3D T1-weighted brain MRI scans of PwMS to build (1) a cross-sectional multicentric cohort for age and disease duration (DD) modeling and (2) a longitudinal single-center cohort of patients with early MS as a clinical use case. We trained and evaluated a 3D DenseNet architecture to predict DD from minimally preprocessed images while age predictions were obtained with the DeepBrainNet model. The brain-predicted DD gap (the difference between predicted and actual duration) was proposed as a DD-adjusted global measure of MS-specific brain damage. Model predictions were scrutinized to assess the influence of lesions and brain volumes while the DD gap was biologically and clinically validated within a linear model framework assessing its relationship with BAG and physical disability measured with the Expanded Disability Status Scale (EDSS).</p><p><strong>Results: </strong>We gathered MRI scans of 4,392 PwMS (69.7% female, age: 42.8 ± 10.6 years, DD: 11.4 ± 9.3 years) from 15 centers while the early MS cohort included 749 sessions from 252 patients (64.7% female, age: 34.5 ± 8.3 years, DD: 0.7 ± 1.2 years). Our model predicted DD better than chance (mean absolute error = 5.63 years, <i>R</i><sup>2</sup> = 0.34) and was nearly orthogonal to the brain-age model (correlation between DD and BAGs: <i>r</i> = 0.06 [0.00-0.13], <i>p</i> = 0.07). Predictions were influenced by distributed variations in brain volume and, unlike brain-predicted age, were sensitive to MS lesions (difference between unfilled and filled scans: 0.55 years [0.51-0.59], <i>p</i> < 0.001). DD gap significantly explained EDSS changes (<i>B</i> = 0.060 [0.038-0.082], <i>p</i> < 0.001), adding to BAG (Δ<i>R</i><sup>2</sup> = 0.012, <i>p</i> < 0.001). Longitudinally, increasing DD gap was associated with greater annualized EDSS change (<i>r</i> = 0.50 [0.39-0.60], <i>p</i> < 0.001), with an incremental contribution in explaining disability worsening compared with changes in BAG alone (Δ<i>R</i><sup>2</sup> = 0.064, <i>p</i> < 0.001).</p><p><strong>Discussion: </strong>The brain-predicted DD gap is sensitive to MS-related lesions and brain atrophy, adds to the brain-age paradigm in explaining physical disability both cross-sectionally and longitudinally, and may be used as an MS-specific biomarker of disease severity and progression.</p>","PeriodicalId":19256,"journal":{"name":"Neurology","volume":"103 10","pages":"e209976"},"PeriodicalIF":7.7000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11540460/pdf/","citationCount":"0","resultStr":"{\"title\":\"Disentangling Neurodegeneration From Aging in Multiple Sclerosis Using Deep Learning: The Brain-Predicted Disease Duration Gap.\",\"authors\":\"Giuseppe Pontillo, Ferran Prados, Jordan Colman, Baris Kanber, Omar Abdel-Mannan, Sarmad Al-Araji, Barbara Bellenberg, Alessia Bianchi, Alvino Bisecco, Wallace J Brownlee, Arturo Brunetti, Alessandro Cagol, Massimiliano Calabrese, Marco Castellaro, Ronja Christensen, Sirio Cocozza, Elisa Colato, Sara Collorone, Rosa Cortese, Nicola De Stefano, Christian Enzinger, Massimo Filippi, Michael A Foster, Antonio Gallo, Claudio Gasperini, Gabriel Gonzalez-Escamilla, Cristina Granziera, Sergiu Groppa, Yael Hacohen, Hanne F F Harbo, Anna He, Einar A Hogestol, Jens Kuhle, Sara Llufriu, Carsten Lukas, Eloy Martinez-Heras, Silvia Messina, Marcello Moccia, Suraya Mohamud, Riccardo Nistri, Gro O Nygaard, Jacqueline Palace, Maria Petracca, Daniela Pinter, Maria A Rocca, Alex Rovira, Serena Ruggieri, Jaume Sastre-Garriga, Eva M Strijbis, Ahmed T Toosy, Tomas Uher, Paola Valsasina, Manuela Vaneckova, Hugo Vrenken, Jed Wingrove, Charmaine Yam, Menno M Schoonheim, Olga Ciccarelli, James H Cole, Frederik Barkhof\",\"doi\":\"10.1212/WNL.0000000000209976\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background and objectives: </strong>Disentangling brain aging from disease-related neurodegeneration in patients with multiple sclerosis (PwMS) is increasingly topical. The brain-age paradigm offers a window into this problem but may miss disease-specific effects. In this study, we investigated whether a disease-specific model might complement the brain-age gap (BAG) by capturing aspects unique to MS.</p><p><strong>Methods: </strong>In this retrospective study, we collected 3D T1-weighted brain MRI scans of PwMS to build (1) a cross-sectional multicentric cohort for age and disease duration (DD) modeling and (2) a longitudinal single-center cohort of patients with early MS as a clinical use case. We trained and evaluated a 3D DenseNet architecture to predict DD from minimally preprocessed images while age predictions were obtained with the DeepBrainNet model. The brain-predicted DD gap (the difference between predicted and actual duration) was proposed as a DD-adjusted global measure of MS-specific brain damage. Model predictions were scrutinized to assess the influence of lesions and brain volumes while the DD gap was biologically and clinically validated within a linear model framework assessing its relationship with BAG and physical disability measured with the Expanded Disability Status Scale (EDSS).</p><p><strong>Results: </strong>We gathered MRI scans of 4,392 PwMS (69.7% female, age: 42.8 ± 10.6 years, DD: 11.4 ± 9.3 years) from 15 centers while the early MS cohort included 749 sessions from 252 patients (64.7% female, age: 34.5 ± 8.3 years, DD: 0.7 ± 1.2 years). Our model predicted DD better than chance (mean absolute error = 5.63 years, <i>R</i><sup>2</sup> = 0.34) and was nearly orthogonal to the brain-age model (correlation between DD and BAGs: <i>r</i> = 0.06 [0.00-0.13], <i>p</i> = 0.07). Predictions were influenced by distributed variations in brain volume and, unlike brain-predicted age, were sensitive to MS lesions (difference between unfilled and filled scans: 0.55 years [0.51-0.59], <i>p</i> < 0.001). DD gap significantly explained EDSS changes (<i>B</i> = 0.060 [0.038-0.082], <i>p</i> < 0.001), adding to BAG (Δ<i>R</i><sup>2</sup> = 0.012, <i>p</i> < 0.001). Longitudinally, increasing DD gap was associated with greater annualized EDSS change (<i>r</i> = 0.50 [0.39-0.60], <i>p</i> < 0.001), with an incremental contribution in explaining disability worsening compared with changes in BAG alone (Δ<i>R</i><sup>2</sup> = 0.064, <i>p</i> < 0.001).</p><p><strong>Discussion: </strong>The brain-predicted DD gap is sensitive to MS-related lesions and brain atrophy, adds to the brain-age paradigm in explaining physical disability both cross-sectionally and longitudinally, and may be used as an MS-specific biomarker of disease severity and progression.</p>\",\"PeriodicalId\":19256,\"journal\":{\"name\":\"Neurology\",\"volume\":\"103 10\",\"pages\":\"e209976\"},\"PeriodicalIF\":7.7000,\"publicationDate\":\"2024-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11540460/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neurology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1212/WNL.0000000000209976\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/4 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1212/WNL.0000000000209976","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/4 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

摘要

背景和目的:将多发性硬化症(PwMS)患者的大脑衰老与疾病相关的神经变性区分开来越来越受到关注。脑年龄范式为这一问题提供了一个窗口,但可能会遗漏特定疾病的影响。在这项研究中,我们探讨了疾病特异性模型是否可以通过捕捉多发性硬化症的独特方面来补充脑年龄差距(BAG):在这项回顾性研究中,我们收集了多发性硬化症患者的三维 T1 加权脑部 MRI 扫描图像,以建立:(1)用于年龄和病程(DD)建模的横断面多中心队列;(2)作为临床用例的早期多发性硬化症患者纵向单中心队列。我们对三维 DenseNet 架构进行了训练和评估,以便从最小预处理图像中预测 DD,同时使用 DeepBrainNet 模型进行年龄预测。我们提出了大脑预测的 DD 差距(预测持续时间与实际持续时间之间的差异),作为 MS 特异性脑损伤的 DD 调整全局衡量标准。我们对模型预测进行了仔细研究,以评估病变和脑容量的影响,同时在线性模型框架内对 DD 间隙进行了生物和临床验证,评估其与 BAG 和用扩展残疾状况量表(EDSS)测量的身体残疾之间的关系:我们收集了来自 15 个中心的 4,392 名 PwMS(69.7% 为女性,年龄:42.8 ± 10.6 岁,DD:11.4 ± 9.3 岁)的 MRI 扫描结果,而早期 MS 队列包括来自 252 名患者(64.7% 为女性,年龄:34.5 ± 8.3 岁,DD:0.7 ± 1.2 岁)的 749 次扫描。我们的模型对 DD 的预测优于偶然性(平均绝对误差 = 5.63 岁,R2 = 0.34),并且几乎与脑年龄模型正交(DD 与 BAGs 之间的相关性:r = 0.06 [0.00-0.13],p = 0.07)。预测受脑容量分布式变化的影响,与脑预测年龄不同,预测对多发性硬化病变敏感(未填充扫描与填充扫描之间的差异:0.55 岁 [0.51-0.59],p < 0.001)。DD间隙能明显解释EDSS的变化(B = 0.060 [0.038-0.082],p < 0.001),并增加了BAG(ΔR2 = 0.012,p < 0.001)。纵向来看,DD间隙的增加与EDSS的年化变化有关(r = 0.50 [0.39-0.60],p < 0.001),与单独的BAG变化相比,DD间隙的增加有助于解释残疾恶化(ΔR2 = 0.064,p < 0.001):讨论:大脑预测的DD间隙对多发性硬化症相关病变和脑萎缩很敏感,在横向和纵向解释肢体残疾方面对脑年龄范式有补充作用,可用作疾病严重程度和进展的多发性硬化症特异性生物标志物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Disentangling Neurodegeneration From Aging in Multiple Sclerosis Using Deep Learning: The Brain-Predicted Disease Duration Gap.

Background and objectives: Disentangling brain aging from disease-related neurodegeneration in patients with multiple sclerosis (PwMS) is increasingly topical. The brain-age paradigm offers a window into this problem but may miss disease-specific effects. In this study, we investigated whether a disease-specific model might complement the brain-age gap (BAG) by capturing aspects unique to MS.

Methods: In this retrospective study, we collected 3D T1-weighted brain MRI scans of PwMS to build (1) a cross-sectional multicentric cohort for age and disease duration (DD) modeling and (2) a longitudinal single-center cohort of patients with early MS as a clinical use case. We trained and evaluated a 3D DenseNet architecture to predict DD from minimally preprocessed images while age predictions were obtained with the DeepBrainNet model. The brain-predicted DD gap (the difference between predicted and actual duration) was proposed as a DD-adjusted global measure of MS-specific brain damage. Model predictions were scrutinized to assess the influence of lesions and brain volumes while the DD gap was biologically and clinically validated within a linear model framework assessing its relationship with BAG and physical disability measured with the Expanded Disability Status Scale (EDSS).

Results: We gathered MRI scans of 4,392 PwMS (69.7% female, age: 42.8 ± 10.6 years, DD: 11.4 ± 9.3 years) from 15 centers while the early MS cohort included 749 sessions from 252 patients (64.7% female, age: 34.5 ± 8.3 years, DD: 0.7 ± 1.2 years). Our model predicted DD better than chance (mean absolute error = 5.63 years, R2 = 0.34) and was nearly orthogonal to the brain-age model (correlation between DD and BAGs: r = 0.06 [0.00-0.13], p = 0.07). Predictions were influenced by distributed variations in brain volume and, unlike brain-predicted age, were sensitive to MS lesions (difference between unfilled and filled scans: 0.55 years [0.51-0.59], p < 0.001). DD gap significantly explained EDSS changes (B = 0.060 [0.038-0.082], p < 0.001), adding to BAG (ΔR2 = 0.012, p < 0.001). Longitudinally, increasing DD gap was associated with greater annualized EDSS change (r = 0.50 [0.39-0.60], p < 0.001), with an incremental contribution in explaining disability worsening compared with changes in BAG alone (ΔR2 = 0.064, p < 0.001).

Discussion: The brain-predicted DD gap is sensitive to MS-related lesions and brain atrophy, adds to the brain-age paradigm in explaining physical disability both cross-sectionally and longitudinally, and may be used as an MS-specific biomarker of disease severity and progression.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neurology
Neurology 医学-临床神经学
CiteScore
12.20
自引率
4.00%
发文量
1973
审稿时长
2-3 weeks
期刊介绍: Neurology, the official journal of the American Academy of Neurology, aspires to be the premier peer-reviewed journal for clinical neurology research. Its mission is to publish exceptional peer-reviewed original research articles, editorials, and reviews to improve patient care, education, clinical research, and professionalism in neurology. As the leading clinical neurology journal worldwide, Neurology targets physicians specializing in nervous system diseases and conditions. It aims to advance the field by presenting new basic and clinical research that influences neurological practice. The journal is a leading source of cutting-edge, peer-reviewed information for the neurology community worldwide. Editorial content includes Research, Clinical/Scientific Notes, Views, Historical Neurology, NeuroImages, Humanities, Letters, and position papers from the American Academy of Neurology. The online version is considered the definitive version, encompassing all available content. Neurology is indexed in prestigious databases such as MEDLINE/PubMed, Embase, Scopus, Biological Abstracts®, PsycINFO®, Current Contents®, Web of Science®, CrossRef, and Google Scholar.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信