Nicolas Lecornec, Matthieu Duchmann, Raphael Itzykson
{"title":"单细胞测序在急性髓性白血病中的应用","authors":"Nicolas Lecornec, Matthieu Duchmann, Raphael Itzykson","doi":"10.1080/10428194.2024.2422833","DOIUrl":null,"url":null,"abstract":"<p><p>Acute myeloid leukemia (AML) is a heterogeneous group of malignancies with poor prognosis. AML result from the proliferation of immature myeloid cells blocked at a variable stage of differentiation. Beyond inter-patient heterogeneity, AMLs are characterized by genetic and phenotypic intra-patient heterogeneity. Despite major advances in deciphering AML biology with bulk sequencing studies, pivotal questions remain unanswered. Analyses at the single-cell level could thus transform our understanding of these neoplasms. We review recent progresses in single-cell sequencing technologies from cell processing to bioinformatic pipelines. We next discuss how single-cell applications have helped understand the genetic and functional intra-leukemic heterogeneity, emphasizing aspects related to leukemic stem cells, clonal evolution and measurable residual disease (MRD) monitoring. We finally delineate how single-cell technologies could be implemented in routine clinical practice to improve patient management.</p>","PeriodicalId":18047,"journal":{"name":"Leukemia & Lymphoma","volume":" ","pages":"175-189"},"PeriodicalIF":2.2000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Single-cell sequencing applications in acute myeloid leukemia.\",\"authors\":\"Nicolas Lecornec, Matthieu Duchmann, Raphael Itzykson\",\"doi\":\"10.1080/10428194.2024.2422833\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Acute myeloid leukemia (AML) is a heterogeneous group of malignancies with poor prognosis. AML result from the proliferation of immature myeloid cells blocked at a variable stage of differentiation. Beyond inter-patient heterogeneity, AMLs are characterized by genetic and phenotypic intra-patient heterogeneity. Despite major advances in deciphering AML biology with bulk sequencing studies, pivotal questions remain unanswered. Analyses at the single-cell level could thus transform our understanding of these neoplasms. We review recent progresses in single-cell sequencing technologies from cell processing to bioinformatic pipelines. We next discuss how single-cell applications have helped understand the genetic and functional intra-leukemic heterogeneity, emphasizing aspects related to leukemic stem cells, clonal evolution and measurable residual disease (MRD) monitoring. We finally delineate how single-cell technologies could be implemented in routine clinical practice to improve patient management.</p>\",\"PeriodicalId\":18047,\"journal\":{\"name\":\"Leukemia & Lymphoma\",\"volume\":\" \",\"pages\":\"175-189\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Leukemia & Lymphoma\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/10428194.2024.2422833\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/4 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"HEMATOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Leukemia & Lymphoma","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/10428194.2024.2422833","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/4 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"HEMATOLOGY","Score":null,"Total":0}
Single-cell sequencing applications in acute myeloid leukemia.
Acute myeloid leukemia (AML) is a heterogeneous group of malignancies with poor prognosis. AML result from the proliferation of immature myeloid cells blocked at a variable stage of differentiation. Beyond inter-patient heterogeneity, AMLs are characterized by genetic and phenotypic intra-patient heterogeneity. Despite major advances in deciphering AML biology with bulk sequencing studies, pivotal questions remain unanswered. Analyses at the single-cell level could thus transform our understanding of these neoplasms. We review recent progresses in single-cell sequencing technologies from cell processing to bioinformatic pipelines. We next discuss how single-cell applications have helped understand the genetic and functional intra-leukemic heterogeneity, emphasizing aspects related to leukemic stem cells, clonal evolution and measurable residual disease (MRD) monitoring. We finally delineate how single-cell technologies could be implemented in routine clinical practice to improve patient management.
期刊介绍:
Leukemia & Lymphoma in its fourth decade continues to provide an international forum for publication of high quality clinical, translational, and basic science research, and original observations relating to all aspects of hematological malignancies. The scope ranges from clinical and clinico-pathological investigations to fundamental research in disease biology, mechanisms of action of novel agents, development of combination chemotherapy, pharmacology and pharmacogenomics as well as ethics and epidemiology. Submissions of unique clinical observations or confirmatory studies are considered and published as Letters to the Editor