{"title":"利用选择离子流管质谱法验证测量呼气氨的传感器系统。","authors":"Michal Wagner, Saliha Saad, Anthony J Killard","doi":"10.1088/1752-7163/ad8e7d","DOIUrl":null,"url":null,"abstract":"<p><p>The measurement of trace breath gases is of growing interest for its potential to provide non-invasive physiological information in health and disease. While instrumental techniques such as selected-ion flow-tube mass spectrometry (SIFT-MS) can achieve this, these are less suitable for clinical application. Sensitive sensor-based systems for breath ammonia could be more widely deployed, but have proven challenging to develop. This work demonstrates the sequential analytical validation of an electrochemical impedance-based sensor system for the measurement of ammonia in breath using SIFT-MS. Qualitative and relative responses between the two methods were comparable, although there were consistent differences in absolute concentration. When tested in artificial breath ammonia, sensors had a relative impedance sensitivity of 3.43x10<sup>-5</sup>ppbv<sup>-1</sup>for each breath in the range of 249 to 1,653 ppbv (<i>r</i><sup>2</sup>=0.87,<i>p</i><0.05). When correlated with SIFT-MS using human breath (<i>n</i>=14), ammonia was detected in the range of 100 to 700 ppbv (<i>r</i>=0.78,<i>p</i><0.001), demonstrating acceptable sensitivity, reproducibility and dynamic range for clinical application.</p>","PeriodicalId":15306,"journal":{"name":"Journal of breath research","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Validation of a sensor system for the measurement of breath ammonia using selected-ion flow-tube mass spectrometry.\",\"authors\":\"Michal Wagner, Saliha Saad, Anthony J Killard\",\"doi\":\"10.1088/1752-7163/ad8e7d\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The measurement of trace breath gases is of growing interest for its potential to provide non-invasive physiological information in health and disease. While instrumental techniques such as selected-ion flow-tube mass spectrometry (SIFT-MS) can achieve this, these are less suitable for clinical application. Sensitive sensor-based systems for breath ammonia could be more widely deployed, but have proven challenging to develop. This work demonstrates the sequential analytical validation of an electrochemical impedance-based sensor system for the measurement of ammonia in breath using SIFT-MS. Qualitative and relative responses between the two methods were comparable, although there were consistent differences in absolute concentration. When tested in artificial breath ammonia, sensors had a relative impedance sensitivity of 3.43x10<sup>-5</sup>ppbv<sup>-1</sup>for each breath in the range of 249 to 1,653 ppbv (<i>r</i><sup>2</sup>=0.87,<i>p</i><0.05). When correlated with SIFT-MS using human breath (<i>n</i>=14), ammonia was detected in the range of 100 to 700 ppbv (<i>r</i>=0.78,<i>p</i><0.001), demonstrating acceptable sensitivity, reproducibility and dynamic range for clinical application.</p>\",\"PeriodicalId\":15306,\"journal\":{\"name\":\"Journal of breath research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of breath research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1088/1752-7163/ad8e7d\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of breath research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1088/1752-7163/ad8e7d","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Validation of a sensor system for the measurement of breath ammonia using selected-ion flow-tube mass spectrometry.
The measurement of trace breath gases is of growing interest for its potential to provide non-invasive physiological information in health and disease. While instrumental techniques such as selected-ion flow-tube mass spectrometry (SIFT-MS) can achieve this, these are less suitable for clinical application. Sensitive sensor-based systems for breath ammonia could be more widely deployed, but have proven challenging to develop. This work demonstrates the sequential analytical validation of an electrochemical impedance-based sensor system for the measurement of ammonia in breath using SIFT-MS. Qualitative and relative responses between the two methods were comparable, although there were consistent differences in absolute concentration. When tested in artificial breath ammonia, sensors had a relative impedance sensitivity of 3.43x10-5ppbv-1for each breath in the range of 249 to 1,653 ppbv (r2=0.87,p<0.05). When correlated with SIFT-MS using human breath (n=14), ammonia was detected in the range of 100 to 700 ppbv (r=0.78,p<0.001), demonstrating acceptable sensitivity, reproducibility and dynamic range for clinical application.
期刊介绍:
Journal of Breath Research is dedicated to all aspects of scientific breath research. The traditional focus is on analysis of volatile compounds and aerosols in exhaled breath for the investigation of exogenous exposures, metabolism, toxicology, health status and the diagnosis of disease and breath odours. The journal also welcomes other breath-related topics.
Typical areas of interest include:
Big laboratory instrumentation: describing new state-of-the-art analytical instrumentation capable of performing high-resolution discovery and targeted breath research; exploiting complex technologies drawn from other areas of biochemistry and genetics for breath research.
Engineering solutions: developing new breath sampling technologies for condensate and aerosols, for chemical and optical sensors, for extraction and sample preparation methods, for automation and standardization, and for multiplex analyses to preserve the breath matrix and facilitating analytical throughput. Measure exhaled constituents (e.g. CO2, acetone, isoprene) as markers of human presence or mitigate such contaminants in enclosed environments.
Human and animal in vivo studies: decoding the ''breath exposome'', implementing exposure and intervention studies, performing cross-sectional and case-control research, assaying immune and inflammatory response, and testing mammalian host response to infections and exogenous exposures to develop information directly applicable to systems biology. Studying inhalation toxicology; inhaled breath as a source of internal dose; resultant blood, breath and urinary biomarkers linked to inhalation pathway.
Cellular and molecular level in vitro studies.
Clinical, pharmacological and forensic applications.
Mathematical, statistical and graphical data interpretation.