{"title":"卫生技术评估是否已为生成式预训练转换器大型语言模型做好准备?鱼缸调查报告。","authors":"Clifford Goodman, Ellie Treloar","doi":"10.1017/S0266462324000382","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>The Health Technology Assessment International (HTAi) 2023 Annual Meeting included a novel \"fishbowl\" session intended to 1) probe the role of HTA in the emergence of generative pretrained transformer (GPT) large language models (LLMs) into health care and 2) demonstrate the semistructured, interactive fishbowl process applied to an emerging \"hot topic\" by diverse international participants.</p><p><strong>Methods: </strong>The fishbowl process is a format for conducting medium-to-large group discussions. Participants are separated into an inner group and an outer group on the periphery. The inner group responds to a set of questions, whereas the outer group listens actively. During the session, participants voluntarily enter and leave the inner group. The questions for this fishbowl were: What are current and potential future applications of GPT LLMs in health care? How can HTA assess intended and unintended impacts of GPT LLM applications in health care? How might GPT be used to improve HTA methodology?</p><p><strong>Results: </strong>Participants offered approximately sixty responses across the three questions. Among the prominent themes were: improving operational efficiency, terminology and language, training and education, evidence synthesis, detecting and minimizing biases, stakeholder engagement, and recognizing and accounting for ethical, legal, and social implications.</p><p><strong>Conclusions: </strong>The interactive fishbowl format enabled the sharing of real-time input on how GPT LLMs and related disruptive technologies will influence what technologies will be assessed, how they will be assessed, and how they might be used to improve HTA. It offers novel perspectives from the HTA community and aligns with certain aspects of ongoing HTA and evidence framework development.</p>","PeriodicalId":14467,"journal":{"name":"International Journal of Technology Assessment in Health Care","volume":"40 1","pages":"e48"},"PeriodicalIF":2.6000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11569908/pdf/","citationCount":"0","resultStr":"{\"title\":\"Is health technology assessment ready for generative pretrained transformer large language models? Report of a fishbowl inquiry.\",\"authors\":\"Clifford Goodman, Ellie Treloar\",\"doi\":\"10.1017/S0266462324000382\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objectives: </strong>The Health Technology Assessment International (HTAi) 2023 Annual Meeting included a novel \\\"fishbowl\\\" session intended to 1) probe the role of HTA in the emergence of generative pretrained transformer (GPT) large language models (LLMs) into health care and 2) demonstrate the semistructured, interactive fishbowl process applied to an emerging \\\"hot topic\\\" by diverse international participants.</p><p><strong>Methods: </strong>The fishbowl process is a format for conducting medium-to-large group discussions. Participants are separated into an inner group and an outer group on the periphery. The inner group responds to a set of questions, whereas the outer group listens actively. During the session, participants voluntarily enter and leave the inner group. The questions for this fishbowl were: What are current and potential future applications of GPT LLMs in health care? How can HTA assess intended and unintended impacts of GPT LLM applications in health care? How might GPT be used to improve HTA methodology?</p><p><strong>Results: </strong>Participants offered approximately sixty responses across the three questions. Among the prominent themes were: improving operational efficiency, terminology and language, training and education, evidence synthesis, detecting and minimizing biases, stakeholder engagement, and recognizing and accounting for ethical, legal, and social implications.</p><p><strong>Conclusions: </strong>The interactive fishbowl format enabled the sharing of real-time input on how GPT LLMs and related disruptive technologies will influence what technologies will be assessed, how they will be assessed, and how they might be used to improve HTA. It offers novel perspectives from the HTA community and aligns with certain aspects of ongoing HTA and evidence framework development.</p>\",\"PeriodicalId\":14467,\"journal\":{\"name\":\"International Journal of Technology Assessment in Health Care\",\"volume\":\"40 1\",\"pages\":\"e48\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11569908/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Technology Assessment in Health Care\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1017/S0266462324000382\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"HEALTH CARE SCIENCES & SERVICES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Technology Assessment in Health Care","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1017/S0266462324000382","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
Is health technology assessment ready for generative pretrained transformer large language models? Report of a fishbowl inquiry.
Objectives: The Health Technology Assessment International (HTAi) 2023 Annual Meeting included a novel "fishbowl" session intended to 1) probe the role of HTA in the emergence of generative pretrained transformer (GPT) large language models (LLMs) into health care and 2) demonstrate the semistructured, interactive fishbowl process applied to an emerging "hot topic" by diverse international participants.
Methods: The fishbowl process is a format for conducting medium-to-large group discussions. Participants are separated into an inner group and an outer group on the periphery. The inner group responds to a set of questions, whereas the outer group listens actively. During the session, participants voluntarily enter and leave the inner group. The questions for this fishbowl were: What are current and potential future applications of GPT LLMs in health care? How can HTA assess intended and unintended impacts of GPT LLM applications in health care? How might GPT be used to improve HTA methodology?
Results: Participants offered approximately sixty responses across the three questions. Among the prominent themes were: improving operational efficiency, terminology and language, training and education, evidence synthesis, detecting and minimizing biases, stakeholder engagement, and recognizing and accounting for ethical, legal, and social implications.
Conclusions: The interactive fishbowl format enabled the sharing of real-time input on how GPT LLMs and related disruptive technologies will influence what technologies will be assessed, how they will be assessed, and how they might be used to improve HTA. It offers novel perspectives from the HTA community and aligns with certain aspects of ongoing HTA and evidence framework development.
期刊介绍:
International Journal of Technology Assessment in Health Care serves as a forum for the wide range of health policy makers and professionals interested in the economic, social, ethical, medical and public health implications of health technology. It covers the development, evaluation, diffusion and use of health technology, as well as its impact on the organization and management of health care systems and public health. In addition to general essays and research reports, regular columns on technology assessment reports and thematic sections are published.