统一理解典型和非典型扑动的心房拓扑结构

IF 9.1 1区 医学 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS
Mattias Duytschaever, Robin Van den Abeele, Niels Carlier, Arthur Santos Bezerra, Bjorn Verstraeten, Sebastiaan Lootens, Karel Desplenter, Arstanbek Okenov, Timur Nezlobinsky, Dipen Shah, Annika Haas, Armin Luik, Jordi Martens, Milad El Haddad, Maarten De Smet, Benjamin De Becker, Clara Francois, Jean-Benoit Le Polain de Waroux, Rene Tavernier, Sebastien Knecht, Sander Hendrickx, Nele Vandersickel
{"title":"统一理解典型和非典型扑动的心房拓扑结构","authors":"Mattias Duytschaever, Robin Van den Abeele, Niels Carlier, Arthur Santos Bezerra, Bjorn Verstraeten, Sebastiaan Lootens, Karel Desplenter, Arstanbek Okenov, Timur Nezlobinsky, Dipen Shah, Annika Haas, Armin Luik, Jordi Martens, Milad El Haddad, Maarten De Smet, Benjamin De Becker, Clara Francois, Jean-Benoit Le Polain de Waroux, Rene Tavernier, Sebastien Knecht, Sander Hendrickx, Nele Vandersickel","doi":"10.1161/CIRCEP.124.013102","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Macroreentry stands as the predominant mechanism of typical and atypical flutter. Despite advances in mapping, many aspects of macroreentrant atrial tachycardia remain unsolved. In this translational study, we applied principles of topology to understand the activation patterns, entrainment characteristics, and ablation responses in a large clinical macroreentrant atrial tachycardia database.</p><p><strong>Methods: </strong>Because the atrium can be topologically seen as a closed sphere with holes, we used a computational fixed spherical mesh model with a finite number of holes to induce and analyze macroreentrant atrial tachycardia. The ensuing insights were used to interpret high-density activation maps, postpacing interval-tachycardia cycle length values (difference between postpacing interval and tachycardia cycle length), and ablation response in 131 cases of typical and atypical flutter (n=106 left atrium, n=25 right atrium).</p><p><strong>Results: </strong>Modeling of macroreentrant atrial tachycardia revealed that reentry on closed surfaces consistently manifests itself as paired rotation and that an odd number of critical boundaries is mathematically impossible. Together with mathematical confirmation by the index theorem, this led to a unifying construct that could explain the number of loops, difference between postpacing interval and tachycardia cycle length values, and ablation outcomes (termination, no change, or prolongation in tachycardia cycle length) in all 131 cases.</p><p><strong>Conclusions: </strong>Combining topology with the index theorem offers a novel and cohesive framework for understanding and managing typical and atypical flutter.</p>","PeriodicalId":10319,"journal":{"name":"Circulation. Arrhythmia and electrophysiology","volume":" ","pages":"e013102"},"PeriodicalIF":9.1000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Atrial Topology for a Unified Understanding of Typical and Atypical Flutter.\",\"authors\":\"Mattias Duytschaever, Robin Van den Abeele, Niels Carlier, Arthur Santos Bezerra, Bjorn Verstraeten, Sebastiaan Lootens, Karel Desplenter, Arstanbek Okenov, Timur Nezlobinsky, Dipen Shah, Annika Haas, Armin Luik, Jordi Martens, Milad El Haddad, Maarten De Smet, Benjamin De Becker, Clara Francois, Jean-Benoit Le Polain de Waroux, Rene Tavernier, Sebastien Knecht, Sander Hendrickx, Nele Vandersickel\",\"doi\":\"10.1161/CIRCEP.124.013102\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Macroreentry stands as the predominant mechanism of typical and atypical flutter. Despite advances in mapping, many aspects of macroreentrant atrial tachycardia remain unsolved. In this translational study, we applied principles of topology to understand the activation patterns, entrainment characteristics, and ablation responses in a large clinical macroreentrant atrial tachycardia database.</p><p><strong>Methods: </strong>Because the atrium can be topologically seen as a closed sphere with holes, we used a computational fixed spherical mesh model with a finite number of holes to induce and analyze macroreentrant atrial tachycardia. The ensuing insights were used to interpret high-density activation maps, postpacing interval-tachycardia cycle length values (difference between postpacing interval and tachycardia cycle length), and ablation response in 131 cases of typical and atypical flutter (n=106 left atrium, n=25 right atrium).</p><p><strong>Results: </strong>Modeling of macroreentrant atrial tachycardia revealed that reentry on closed surfaces consistently manifests itself as paired rotation and that an odd number of critical boundaries is mathematically impossible. Together with mathematical confirmation by the index theorem, this led to a unifying construct that could explain the number of loops, difference between postpacing interval and tachycardia cycle length values, and ablation outcomes (termination, no change, or prolongation in tachycardia cycle length) in all 131 cases.</p><p><strong>Conclusions: </strong>Combining topology with the index theorem offers a novel and cohesive framework for understanding and managing typical and atypical flutter.</p>\",\"PeriodicalId\":10319,\"journal\":{\"name\":\"Circulation. Arrhythmia and electrophysiology\",\"volume\":\" \",\"pages\":\"e013102\"},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Circulation. Arrhythmia and electrophysiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1161/CIRCEP.124.013102\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/5 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CARDIAC & CARDIOVASCULAR SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Circulation. Arrhythmia and electrophysiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1161/CIRCEP.124.013102","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/5 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

背景:大再发是典型和非典型扑动的主要机制。尽管在图谱绘制方面取得了进展,但大再发性房性心动过速的许多方面仍未解决。在这项转化研究中,我们应用拓扑学原理来了解大型临床大再发性房性心动过速数据库中的激活模式、夹带特征和消融反应:因为从拓扑学角度看,心房是一个带有孔洞的封闭球体,所以我们使用了一个具有有限孔洞数量的计算固定球形网格模型来诱导和分析大再发性房性心动过速。随后,我们对 131 例典型和非典型扑动(左心房 106 例,右心房 25 例)的高密度激活图、起搏后间期-心动过速周期长度值(起搏后间期与心动过速周期长度之差)和消融反应进行了解读:对大再发性房性心动过速的建模显示,闭合面上的再发始终表现为成对旋转,而奇数临界点在数学上是不可能存在的。加上指数定理的数学确认,这就形成了一个统一的结构,可以解释所有 131 个病例中的环路数量、起搏后间期与心动过速周期长度值之间的差异以及消融结果(终止、无变化或心动过速周期长度延长):结论:拓扑学与指数定理的结合为理解和管理典型和非典型扑动提供了一个新颖而有内涵的框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Atrial Topology for a Unified Understanding of Typical and Atypical Flutter.

Background: Macroreentry stands as the predominant mechanism of typical and atypical flutter. Despite advances in mapping, many aspects of macroreentrant atrial tachycardia remain unsolved. In this translational study, we applied principles of topology to understand the activation patterns, entrainment characteristics, and ablation responses in a large clinical macroreentrant atrial tachycardia database.

Methods: Because the atrium can be topologically seen as a closed sphere with holes, we used a computational fixed spherical mesh model with a finite number of holes to induce and analyze macroreentrant atrial tachycardia. The ensuing insights were used to interpret high-density activation maps, postpacing interval-tachycardia cycle length values (difference between postpacing interval and tachycardia cycle length), and ablation response in 131 cases of typical and atypical flutter (n=106 left atrium, n=25 right atrium).

Results: Modeling of macroreentrant atrial tachycardia revealed that reentry on closed surfaces consistently manifests itself as paired rotation and that an odd number of critical boundaries is mathematically impossible. Together with mathematical confirmation by the index theorem, this led to a unifying construct that could explain the number of loops, difference between postpacing interval and tachycardia cycle length values, and ablation outcomes (termination, no change, or prolongation in tachycardia cycle length) in all 131 cases.

Conclusions: Combining topology with the index theorem offers a novel and cohesive framework for understanding and managing typical and atypical flutter.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
13.70
自引率
4.80%
发文量
187
审稿时长
4-8 weeks
期刊介绍: Circulation: Arrhythmia and Electrophysiology is a journal dedicated to the study and application of clinical cardiac electrophysiology. It covers a wide range of topics including the diagnosis and treatment of cardiac arrhythmias, as well as research in this field. The journal accepts various types of studies, including observational research, clinical trials, epidemiological studies, and advancements in translational research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信