{"title":"PangeBlocks:通过最大块定制构建泛基因组图。","authors":"Jorge Avila Cartes, Paola Bonizzoni, Simone Ciccolella, Gianluca Della Vedova, Luca Denti","doi":"10.1186/s12859-024-05958-5","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The construction of a pangenome graph is a fundamental task in pangenomics. A natural theoretical question is how to formalize the computational problem of building an optimal pangenome graph, making explicit the underlying optimization criterion and the set of feasible solutions. Current approaches build a pangenome graph with some heuristics, without assuming some explicit optimization criteria. Thus it is unclear how a specific optimization criterion affects the graph topology and downstream analysis, like read mapping and variant calling.</p><p><strong>Results: </strong>In this paper, by leveraging the notion of maximal block in a Multiple Sequence Alignment (MSA), we reframe the pangenome graph construction problem as an exact cover problem on blocks called Minimum Weighted Block Cover (MWBC). Then we propose an Integer Linear Programming (ILP) formulation for the MWBC problem that allows us to study the most natural objective functions for building a graph. We provide an implementation of the ILP approach for solving the MWBC and we evaluate it on SARS-CoV-2 complete genomes, showing how different objective functions lead to pangenome graphs that have different properties, hinting that the specific downstream task can drive the graph construction phase.</p><p><strong>Conclusion: </strong>We show that a customized construction of a pangenome graph based on selecting objective functions has a direct impact on the resulting graphs. In particular, our formalization of the MWBC problem, based on finding an optimal subset of blocks covering an MSA, paves the way to novel practical approaches to graph representations of an MSA where the user can guide the construction.</p>","PeriodicalId":8958,"journal":{"name":"BMC Bioinformatics","volume":"25 1","pages":"344"},"PeriodicalIF":2.9000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11533710/pdf/","citationCount":"0","resultStr":"{\"title\":\"PangeBlocks: customized construction of pangenome graphs via maximal blocks.\",\"authors\":\"Jorge Avila Cartes, Paola Bonizzoni, Simone Ciccolella, Gianluca Della Vedova, Luca Denti\",\"doi\":\"10.1186/s12859-024-05958-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>The construction of a pangenome graph is a fundamental task in pangenomics. A natural theoretical question is how to formalize the computational problem of building an optimal pangenome graph, making explicit the underlying optimization criterion and the set of feasible solutions. Current approaches build a pangenome graph with some heuristics, without assuming some explicit optimization criteria. Thus it is unclear how a specific optimization criterion affects the graph topology and downstream analysis, like read mapping and variant calling.</p><p><strong>Results: </strong>In this paper, by leveraging the notion of maximal block in a Multiple Sequence Alignment (MSA), we reframe the pangenome graph construction problem as an exact cover problem on blocks called Minimum Weighted Block Cover (MWBC). Then we propose an Integer Linear Programming (ILP) formulation for the MWBC problem that allows us to study the most natural objective functions for building a graph. We provide an implementation of the ILP approach for solving the MWBC and we evaluate it on SARS-CoV-2 complete genomes, showing how different objective functions lead to pangenome graphs that have different properties, hinting that the specific downstream task can drive the graph construction phase.</p><p><strong>Conclusion: </strong>We show that a customized construction of a pangenome graph based on selecting objective functions has a direct impact on the resulting graphs. In particular, our formalization of the MWBC problem, based on finding an optimal subset of blocks covering an MSA, paves the way to novel practical approaches to graph representations of an MSA where the user can guide the construction.</p>\",\"PeriodicalId\":8958,\"journal\":{\"name\":\"BMC Bioinformatics\",\"volume\":\"25 1\",\"pages\":\"344\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11533710/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BMC Bioinformatics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s12859-024-05958-5\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12859-024-05958-5","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
PangeBlocks: customized construction of pangenome graphs via maximal blocks.
Background: The construction of a pangenome graph is a fundamental task in pangenomics. A natural theoretical question is how to formalize the computational problem of building an optimal pangenome graph, making explicit the underlying optimization criterion and the set of feasible solutions. Current approaches build a pangenome graph with some heuristics, without assuming some explicit optimization criteria. Thus it is unclear how a specific optimization criterion affects the graph topology and downstream analysis, like read mapping and variant calling.
Results: In this paper, by leveraging the notion of maximal block in a Multiple Sequence Alignment (MSA), we reframe the pangenome graph construction problem as an exact cover problem on blocks called Minimum Weighted Block Cover (MWBC). Then we propose an Integer Linear Programming (ILP) formulation for the MWBC problem that allows us to study the most natural objective functions for building a graph. We provide an implementation of the ILP approach for solving the MWBC and we evaluate it on SARS-CoV-2 complete genomes, showing how different objective functions lead to pangenome graphs that have different properties, hinting that the specific downstream task can drive the graph construction phase.
Conclusion: We show that a customized construction of a pangenome graph based on selecting objective functions has a direct impact on the resulting graphs. In particular, our formalization of the MWBC problem, based on finding an optimal subset of blocks covering an MSA, paves the way to novel practical approaches to graph representations of an MSA where the user can guide the construction.
期刊介绍:
BMC Bioinformatics is an open access, peer-reviewed journal that considers articles on all aspects of the development, testing and novel application of computational and statistical methods for the modeling and analysis of all kinds of biological data, as well as other areas of computational biology.
BMC Bioinformatics is part of the BMC series which publishes subject-specific journals focused on the needs of individual research communities across all areas of biology and medicine. We offer an efficient, fair and friendly peer review service, and are committed to publishing all sound science, provided that there is some advance in knowledge presented by the work.