Varun Trivedi, Amirsadra Mohseni, Stefano Lonardi, Ian Wheeldon
{"title":"平衡训练集改善了基于深度学习的 CRISPR sgRNA 活性预测。","authors":"Varun Trivedi, Amirsadra Mohseni, Stefano Lonardi, Ian Wheeldon","doi":"10.1021/acssynbio.4c00542","DOIUrl":null,"url":null,"abstract":"<p><p>CRISPR-Cas systems have transformed the field of synthetic biology by providing a versatile method for genome editing. The efficiency of CRISPR systems is largely dependent on the sequence of the constituent sgRNA, necessitating the development of computational methods for designing active sgRNAs. While deep learning-based models have shown promise in predicting sgRNA activity, the accuracy of prediction is primarily governed by the data set used in model training. Here, we trained a convolutional neural network (CNN) model and a large language model (LLM) on balanced and imbalanced data sets generated from CRISPR-Cas12a screening data for the yeast <i>Yarrowia lipolytica</i> and evaluated their ability to predict high- and low-activity sgRNAs. We further tested whether prediction performance can be improved by training on imbalanced data sets augmented with synthetic sgRNAs. Lastly, we demonstrated that adding synthetic sgRNAs to inherently imbalanced CRISPR-Cas9 data sets from <i>Y. lipolytica</i> and <i>Komagataella phaffii</i> leads to improved performance in predicting sgRNA activity, thus underscoring the importance of employing balanced training sets for accurate sgRNA activity prediction.</p>","PeriodicalId":26,"journal":{"name":"ACS Synthetic Biology","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Balanced Training Sets Improve Deep Learning-Based Prediction of CRISPR sgRNA Activity.\",\"authors\":\"Varun Trivedi, Amirsadra Mohseni, Stefano Lonardi, Ian Wheeldon\",\"doi\":\"10.1021/acssynbio.4c00542\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>CRISPR-Cas systems have transformed the field of synthetic biology by providing a versatile method for genome editing. The efficiency of CRISPR systems is largely dependent on the sequence of the constituent sgRNA, necessitating the development of computational methods for designing active sgRNAs. While deep learning-based models have shown promise in predicting sgRNA activity, the accuracy of prediction is primarily governed by the data set used in model training. Here, we trained a convolutional neural network (CNN) model and a large language model (LLM) on balanced and imbalanced data sets generated from CRISPR-Cas12a screening data for the yeast <i>Yarrowia lipolytica</i> and evaluated their ability to predict high- and low-activity sgRNAs. We further tested whether prediction performance can be improved by training on imbalanced data sets augmented with synthetic sgRNAs. Lastly, we demonstrated that adding synthetic sgRNAs to inherently imbalanced CRISPR-Cas9 data sets from <i>Y. lipolytica</i> and <i>Komagataella phaffii</i> leads to improved performance in predicting sgRNA activity, thus underscoring the importance of employing balanced training sets for accurate sgRNA activity prediction.</p>\",\"PeriodicalId\":26,\"journal\":{\"name\":\"ACS Synthetic Biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Synthetic Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1021/acssynbio.4c00542\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Synthetic Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1021/acssynbio.4c00542","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Balanced Training Sets Improve Deep Learning-Based Prediction of CRISPR sgRNA Activity.
CRISPR-Cas systems have transformed the field of synthetic biology by providing a versatile method for genome editing. The efficiency of CRISPR systems is largely dependent on the sequence of the constituent sgRNA, necessitating the development of computational methods for designing active sgRNAs. While deep learning-based models have shown promise in predicting sgRNA activity, the accuracy of prediction is primarily governed by the data set used in model training. Here, we trained a convolutional neural network (CNN) model and a large language model (LLM) on balanced and imbalanced data sets generated from CRISPR-Cas12a screening data for the yeast Yarrowia lipolytica and evaluated their ability to predict high- and low-activity sgRNAs. We further tested whether prediction performance can be improved by training on imbalanced data sets augmented with synthetic sgRNAs. Lastly, we demonstrated that adding synthetic sgRNAs to inherently imbalanced CRISPR-Cas9 data sets from Y. lipolytica and Komagataella phaffii leads to improved performance in predicting sgRNA activity, thus underscoring the importance of employing balanced training sets for accurate sgRNA activity prediction.
期刊介绍:
The journal is particularly interested in studies on the design and synthesis of new genetic circuits and gene products; computational methods in the design of systems; and integrative applied approaches to understanding disease and metabolism.
Topics may include, but are not limited to:
Design and optimization of genetic systems
Genetic circuit design and their principles for their organization into programs
Computational methods to aid the design of genetic systems
Experimental methods to quantify genetic parts, circuits, and metabolic fluxes
Genetic parts libraries: their creation, analysis, and ontological representation
Protein engineering including computational design
Metabolic engineering and cellular manufacturing, including biomass conversion
Natural product access, engineering, and production
Creative and innovative applications of cellular programming
Medical applications, tissue engineering, and the programming of therapeutic cells
Minimal cell design and construction
Genomics and genome replacement strategies
Viral engineering
Automated and robotic assembly platforms for synthetic biology
DNA synthesis methodologies
Metagenomics and synthetic metagenomic analysis
Bioinformatics applied to gene discovery, chemoinformatics, and pathway construction
Gene optimization
Methods for genome-scale measurements of transcription and metabolomics
Systems biology and methods to integrate multiple data sources
in vitro and cell-free synthetic biology and molecular programming
Nucleic acid engineering.