𝜈=14+34时量子霍尔双层膜中的连续电子涡旋结合

IF 3.7 2区 物理与天体物理 Q1 Physics and Astronomy
Glenn Wagner, Dung X. Nguyen
{"title":"𝜈=14+34时量子霍尔双层膜中的连续电子涡旋结合","authors":"Glenn Wagner, Dung X. Nguyen","doi":"10.1103/physrevb.110.195106","DOIUrl":null,"url":null,"abstract":"Electrons in a quantum Hall fluid can bind with an integer number of vortices to form composite fermions and composite bosons. We show that the quantum Hall bilayer at filling <mjx-container ctxtmenu_counter=\"26\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"(10 0 1 (9 (4 2 3) 5 (8 6 7)))\"><mjx-mrow data-semantic-children=\"0,9\" data-semantic-content=\"1\" data-semantic- data-semantic-owns=\"0 1 9\" data-semantic-role=\"equality\" data-semantic-speech=\"nu equals one fourth plus three fourths\" data-semantic-type=\"relseq\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"10\" data-semantic-role=\"greekletter\" data-semantic-type=\"identifier\"><mjx-c>𝜈</mjx-c></mjx-mi><mjx-mo data-semantic- data-semantic-operator=\"relseq,=\" data-semantic-parent=\"10\" data-semantic-role=\"equality\" data-semantic-type=\"relation\" space=\"4\"><mjx-c>=</mjx-c></mjx-mo><mjx-mrow data-semantic-added=\"true\" data-semantic-children=\"4,8\" data-semantic-content=\"5\" data-semantic- data-semantic-owns=\"4 5 8\" data-semantic-parent=\"10\" data-semantic-role=\"addition\" data-semantic-type=\"infixop\" space=\"4\"><mjx-mfrac data-semantic-annotation=\"clearspeak:simple\" data-semantic-children=\"2,3\" data-semantic- data-semantic-owns=\"2 3\" data-semantic-parent=\"9\" data-semantic-role=\"vulgar\" data-semantic-type=\"fraction\"><mjx-frac style=\"vertical-align: 0.148em;\"><mjx-num><mjx-nstrut style=\"height: 0.042em; vertical-align: -0.042em;\"></mjx-nstrut><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"4\" data-semantic-role=\"integer\" data-semantic-type=\"number\" size=\"s\"><mjx-c>1</mjx-c></mjx-mn></mjx-num><mjx-dbox><mjx-dtable><mjx-line style=\"height: 0.068em; border-top: 0.085em solid; margin: 0.068em -0.1em;\"></mjx-line><mjx-row><mjx-den><mjx-dstrut style=\"height: 0.493em;\"></mjx-dstrut><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"4\" data-semantic-role=\"integer\" data-semantic-type=\"number\" size=\"s\"><mjx-c>4</mjx-c></mjx-mn></mjx-den></mjx-row></mjx-dtable></mjx-dbox></mjx-frac></mjx-mfrac><mjx-mo data-semantic- data-semantic-operator=\"infixop,+\" data-semantic-parent=\"9\" data-semantic-role=\"addition\" data-semantic-type=\"operator\" space=\"3\"><mjx-c>+</mjx-c></mjx-mo><mjx-mfrac data-semantic-annotation=\"clearspeak:simple\" data-semantic-children=\"6,7\" data-semantic- data-semantic-owns=\"6 7\" data-semantic-parent=\"9\" data-semantic-role=\"vulgar\" data-semantic-type=\"fraction\" space=\"3\"><mjx-frac style=\"vertical-align: 0.148em;\"><mjx-num><mjx-nstrut style=\"height: 0.042em; vertical-align: -0.042em;\"></mjx-nstrut><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"8\" data-semantic-role=\"integer\" data-semantic-type=\"number\" size=\"s\"><mjx-c>3</mjx-c></mjx-mn></mjx-num><mjx-dbox><mjx-dtable><mjx-line style=\"height: 0.068em; border-top: 0.085em solid; margin: 0.068em -0.1em;\"></mjx-line><mjx-row><mjx-den><mjx-dstrut style=\"height: 0.493em;\"></mjx-dstrut><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"8\" data-semantic-role=\"integer\" data-semantic-type=\"number\" size=\"s\"><mjx-c>4</mjx-c></mjx-mn></mjx-den></mjx-row></mjx-dtable></mjx-dbox></mjx-frac></mjx-mfrac></mjx-mrow></mjx-mrow></mjx-math></mjx-container> with interlayer separation <mjx-container ctxtmenu_counter=\"27\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"0\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-role=\"latinletter\" data-semantic-speech=\"d\" data-semantic-type=\"identifier\"><mjx-c>𝑑</mjx-c></mjx-mi></mjx-math></mjx-container> can be well described in terms of these composite particles. At small <mjx-container ctxtmenu_counter=\"28\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"0\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-role=\"latinletter\" data-semantic-speech=\"d\" data-semantic-type=\"identifier\"><mjx-c>𝑑</mjx-c></mjx-mi></mjx-math></mjx-container> the system can be understood as interlayer paired electrons and holes, whereas at large <mjx-container ctxtmenu_counter=\"29\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"0\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-role=\"latinletter\" data-semantic-speech=\"d\" data-semantic-type=\"identifier\"><mjx-c>𝑑</mjx-c></mjx-mi></mjx-math></mjx-container> the system is best understood in terms of composite fermions with four vortices attached to each electron. By computing the overlaps of trial wave functions with the ground state from exact diagonalization, we find that, as <mjx-container ctxtmenu_counter=\"30\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"0\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-role=\"latinletter\" data-semantic-speech=\"d\" data-semantic-type=\"identifier\"><mjx-c>𝑑</mjx-c></mjx-mi></mjx-math></mjx-container> increases, the number of vortices that attach to each electron increases. We also construct trial states for two types of excitation, the Goldstone mode and a meron excitation. These two trial states have good overlaps with the lowest excited states in the exact diagonalization spectrum for small and intermediate <mjx-container ctxtmenu_counter=\"31\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"0\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-role=\"latinletter\" data-semantic-speech=\"d\" data-semantic-type=\"identifier\"><mjx-c>𝑑</mjx-c></mjx-mi></mjx-math></mjx-container>, respectively.","PeriodicalId":20082,"journal":{"name":"Physical Review B","volume":"87 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Successive electron-vortex binding in quantum Hall bilayers at𝜈=14+34\",\"authors\":\"Glenn Wagner, Dung X. Nguyen\",\"doi\":\"10.1103/physrevb.110.195106\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Electrons in a quantum Hall fluid can bind with an integer number of vortices to form composite fermions and composite bosons. We show that the quantum Hall bilayer at filling <mjx-container ctxtmenu_counter=\\\"26\\\" ctxtmenu_oldtabindex=\\\"1\\\" jax=\\\"CHTML\\\" overflow=\\\"linebreak\\\" role=\\\"tree\\\" sre-explorer- style=\\\"font-size: 100.7%;\\\" tabindex=\\\"0\\\"><mjx-math data-semantic-structure=\\\"(10 0 1 (9 (4 2 3) 5 (8 6 7)))\\\"><mjx-mrow data-semantic-children=\\\"0,9\\\" data-semantic-content=\\\"1\\\" data-semantic- data-semantic-owns=\\\"0 1 9\\\" data-semantic-role=\\\"equality\\\" data-semantic-speech=\\\"nu equals one fourth plus three fourths\\\" data-semantic-type=\\\"relseq\\\"><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic- data-semantic-parent=\\\"10\\\" data-semantic-role=\\\"greekletter\\\" data-semantic-type=\\\"identifier\\\"><mjx-c>𝜈</mjx-c></mjx-mi><mjx-mo data-semantic- data-semantic-operator=\\\"relseq,=\\\" data-semantic-parent=\\\"10\\\" data-semantic-role=\\\"equality\\\" data-semantic-type=\\\"relation\\\" space=\\\"4\\\"><mjx-c>=</mjx-c></mjx-mo><mjx-mrow data-semantic-added=\\\"true\\\" data-semantic-children=\\\"4,8\\\" data-semantic-content=\\\"5\\\" data-semantic- data-semantic-owns=\\\"4 5 8\\\" data-semantic-parent=\\\"10\\\" data-semantic-role=\\\"addition\\\" data-semantic-type=\\\"infixop\\\" space=\\\"4\\\"><mjx-mfrac data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-children=\\\"2,3\\\" data-semantic- data-semantic-owns=\\\"2 3\\\" data-semantic-parent=\\\"9\\\" data-semantic-role=\\\"vulgar\\\" data-semantic-type=\\\"fraction\\\"><mjx-frac style=\\\"vertical-align: 0.148em;\\\"><mjx-num><mjx-nstrut style=\\\"height: 0.042em; vertical-align: -0.042em;\\\"></mjx-nstrut><mjx-mn data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-parent=\\\"4\\\" data-semantic-role=\\\"integer\\\" data-semantic-type=\\\"number\\\" size=\\\"s\\\"><mjx-c>1</mjx-c></mjx-mn></mjx-num><mjx-dbox><mjx-dtable><mjx-line style=\\\"height: 0.068em; border-top: 0.085em solid; margin: 0.068em -0.1em;\\\"></mjx-line><mjx-row><mjx-den><mjx-dstrut style=\\\"height: 0.493em;\\\"></mjx-dstrut><mjx-mn data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-parent=\\\"4\\\" data-semantic-role=\\\"integer\\\" data-semantic-type=\\\"number\\\" size=\\\"s\\\"><mjx-c>4</mjx-c></mjx-mn></mjx-den></mjx-row></mjx-dtable></mjx-dbox></mjx-frac></mjx-mfrac><mjx-mo data-semantic- data-semantic-operator=\\\"infixop,+\\\" data-semantic-parent=\\\"9\\\" data-semantic-role=\\\"addition\\\" data-semantic-type=\\\"operator\\\" space=\\\"3\\\"><mjx-c>+</mjx-c></mjx-mo><mjx-mfrac data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-children=\\\"6,7\\\" data-semantic- data-semantic-owns=\\\"6 7\\\" data-semantic-parent=\\\"9\\\" data-semantic-role=\\\"vulgar\\\" data-semantic-type=\\\"fraction\\\" space=\\\"3\\\"><mjx-frac style=\\\"vertical-align: 0.148em;\\\"><mjx-num><mjx-nstrut style=\\\"height: 0.042em; vertical-align: -0.042em;\\\"></mjx-nstrut><mjx-mn data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-parent=\\\"8\\\" data-semantic-role=\\\"integer\\\" data-semantic-type=\\\"number\\\" size=\\\"s\\\"><mjx-c>3</mjx-c></mjx-mn></mjx-num><mjx-dbox><mjx-dtable><mjx-line style=\\\"height: 0.068em; border-top: 0.085em solid; margin: 0.068em -0.1em;\\\"></mjx-line><mjx-row><mjx-den><mjx-dstrut style=\\\"height: 0.493em;\\\"></mjx-dstrut><mjx-mn data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-parent=\\\"8\\\" data-semantic-role=\\\"integer\\\" data-semantic-type=\\\"number\\\" size=\\\"s\\\"><mjx-c>4</mjx-c></mjx-mn></mjx-den></mjx-row></mjx-dtable></mjx-dbox></mjx-frac></mjx-mfrac></mjx-mrow></mjx-mrow></mjx-math></mjx-container> with interlayer separation <mjx-container ctxtmenu_counter=\\\"27\\\" ctxtmenu_oldtabindex=\\\"1\\\" jax=\\\"CHTML\\\" overflow=\\\"linebreak\\\" role=\\\"tree\\\" sre-explorer- style=\\\"font-size: 100.7%;\\\" tabindex=\\\"0\\\"><mjx-math data-semantic-structure=\\\"0\\\"><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic- data-semantic-role=\\\"latinletter\\\" data-semantic-speech=\\\"d\\\" data-semantic-type=\\\"identifier\\\"><mjx-c>𝑑</mjx-c></mjx-mi></mjx-math></mjx-container> can be well described in terms of these composite particles. At small <mjx-container ctxtmenu_counter=\\\"28\\\" ctxtmenu_oldtabindex=\\\"1\\\" jax=\\\"CHTML\\\" overflow=\\\"linebreak\\\" role=\\\"tree\\\" sre-explorer- style=\\\"font-size: 100.7%;\\\" tabindex=\\\"0\\\"><mjx-math data-semantic-structure=\\\"0\\\"><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic- data-semantic-role=\\\"latinletter\\\" data-semantic-speech=\\\"d\\\" data-semantic-type=\\\"identifier\\\"><mjx-c>𝑑</mjx-c></mjx-mi></mjx-math></mjx-container> the system can be understood as interlayer paired electrons and holes, whereas at large <mjx-container ctxtmenu_counter=\\\"29\\\" ctxtmenu_oldtabindex=\\\"1\\\" jax=\\\"CHTML\\\" overflow=\\\"linebreak\\\" role=\\\"tree\\\" sre-explorer- style=\\\"font-size: 100.7%;\\\" tabindex=\\\"0\\\"><mjx-math data-semantic-structure=\\\"0\\\"><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic- data-semantic-role=\\\"latinletter\\\" data-semantic-speech=\\\"d\\\" data-semantic-type=\\\"identifier\\\"><mjx-c>𝑑</mjx-c></mjx-mi></mjx-math></mjx-container> the system is best understood in terms of composite fermions with four vortices attached to each electron. By computing the overlaps of trial wave functions with the ground state from exact diagonalization, we find that, as <mjx-container ctxtmenu_counter=\\\"30\\\" ctxtmenu_oldtabindex=\\\"1\\\" jax=\\\"CHTML\\\" overflow=\\\"linebreak\\\" role=\\\"tree\\\" sre-explorer- style=\\\"font-size: 100.7%;\\\" tabindex=\\\"0\\\"><mjx-math data-semantic-structure=\\\"0\\\"><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic- data-semantic-role=\\\"latinletter\\\" data-semantic-speech=\\\"d\\\" data-semantic-type=\\\"identifier\\\"><mjx-c>𝑑</mjx-c></mjx-mi></mjx-math></mjx-container> increases, the number of vortices that attach to each electron increases. We also construct trial states for two types of excitation, the Goldstone mode and a meron excitation. These two trial states have good overlaps with the lowest excited states in the exact diagonalization spectrum for small and intermediate <mjx-container ctxtmenu_counter=\\\"31\\\" ctxtmenu_oldtabindex=\\\"1\\\" jax=\\\"CHTML\\\" overflow=\\\"linebreak\\\" role=\\\"tree\\\" sre-explorer- style=\\\"font-size: 100.7%;\\\" tabindex=\\\"0\\\"><mjx-math data-semantic-structure=\\\"0\\\"><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic- data-semantic-role=\\\"latinletter\\\" data-semantic-speech=\\\"d\\\" data-semantic-type=\\\"identifier\\\"><mjx-c>𝑑</mjx-c></mjx-mi></mjx-math></mjx-container>, respectively.\",\"PeriodicalId\":20082,\"journal\":{\"name\":\"Physical Review B\",\"volume\":\"87 1\",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review B\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevb.110.195106\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review B","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevb.110.195106","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

摘要

量子霍尔流体中的电子可以与整数个漩涡结合,形成复合费米子和复合玻色子。我们的研究表明,填充𝜈=14+34、层间距为𝑑 的量子霍尔双层流体可以用这些复合粒子很好地描述。在小𝑑 条件下,该系统可以理解为层间成对的电子和空穴,而在大𝑑 条件下,该系统最好理解为每个电子上都有四个旋涡的复合费米子。通过精确对角计算试验波函数与基态的重叠,我们发现随着 𝑑 的增加,每个电子上附着的涡旋数量也在增加。我们还构建了两种激发的试验态,即金石模式和梅龙激发。这两种试验态与精确对角谱中的最低激发态(分别为小θ和中θ)有很好的重叠。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Successive electron-vortex binding in quantum Hall bilayers at𝜈=14+34
Electrons in a quantum Hall fluid can bind with an integer number of vortices to form composite fermions and composite bosons. We show that the quantum Hall bilayer at filling 𝜈=14+34 with interlayer separation 𝑑 can be well described in terms of these composite particles. At small 𝑑 the system can be understood as interlayer paired electrons and holes, whereas at large 𝑑 the system is best understood in terms of composite fermions with four vortices attached to each electron. By computing the overlaps of trial wave functions with the ground state from exact diagonalization, we find that, as 𝑑 increases, the number of vortices that attach to each electron increases. We also construct trial states for two types of excitation, the Goldstone mode and a meron excitation. These two trial states have good overlaps with the lowest excited states in the exact diagonalization spectrum for small and intermediate 𝑑, respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physical Review B
Physical Review B 物理-物理:凝聚态物理
CiteScore
6.70
自引率
32.40%
发文量
0
审稿时长
3.0 months
期刊介绍: Physical Review B (PRB) is the world’s largest dedicated physics journal, publishing approximately 100 new, high-quality papers each week. The most highly cited journal in condensed matter physics, PRB provides outstanding depth and breadth of coverage, combined with unrivaled context and background for ongoing research by scientists worldwide. PRB covers the full range of condensed matter, materials physics, and related subfields, including: -Structure and phase transitions -Ferroelectrics and multiferroics -Disordered systems and alloys -Magnetism -Superconductivity -Electronic structure, photonics, and metamaterials -Semiconductors and mesoscopic systems -Surfaces, nanoscience, and two-dimensional materials -Topological states of matter
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信