{"title":"𝜈=14+34时量子霍尔双层膜中的连续电子涡旋结合","authors":"Glenn Wagner, Dung X. Nguyen","doi":"10.1103/physrevb.110.195106","DOIUrl":null,"url":null,"abstract":"Electrons in a quantum Hall fluid can bind with an integer number of vortices to form composite fermions and composite bosons. We show that the quantum Hall bilayer at filling <mjx-container ctxtmenu_counter=\"26\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"(10 0 1 (9 (4 2 3) 5 (8 6 7)))\"><mjx-mrow data-semantic-children=\"0,9\" data-semantic-content=\"1\" data-semantic- data-semantic-owns=\"0 1 9\" data-semantic-role=\"equality\" data-semantic-speech=\"nu equals one fourth plus three fourths\" data-semantic-type=\"relseq\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"10\" data-semantic-role=\"greekletter\" data-semantic-type=\"identifier\"><mjx-c>𝜈</mjx-c></mjx-mi><mjx-mo data-semantic- data-semantic-operator=\"relseq,=\" data-semantic-parent=\"10\" data-semantic-role=\"equality\" data-semantic-type=\"relation\" space=\"4\"><mjx-c>=</mjx-c></mjx-mo><mjx-mrow data-semantic-added=\"true\" data-semantic-children=\"4,8\" data-semantic-content=\"5\" data-semantic- data-semantic-owns=\"4 5 8\" data-semantic-parent=\"10\" data-semantic-role=\"addition\" data-semantic-type=\"infixop\" space=\"4\"><mjx-mfrac data-semantic-annotation=\"clearspeak:simple\" data-semantic-children=\"2,3\" data-semantic- data-semantic-owns=\"2 3\" data-semantic-parent=\"9\" data-semantic-role=\"vulgar\" data-semantic-type=\"fraction\"><mjx-frac style=\"vertical-align: 0.148em;\"><mjx-num><mjx-nstrut style=\"height: 0.042em; vertical-align: -0.042em;\"></mjx-nstrut><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"4\" data-semantic-role=\"integer\" data-semantic-type=\"number\" size=\"s\"><mjx-c>1</mjx-c></mjx-mn></mjx-num><mjx-dbox><mjx-dtable><mjx-line style=\"height: 0.068em; border-top: 0.085em solid; margin: 0.068em -0.1em;\"></mjx-line><mjx-row><mjx-den><mjx-dstrut style=\"height: 0.493em;\"></mjx-dstrut><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"4\" data-semantic-role=\"integer\" data-semantic-type=\"number\" size=\"s\"><mjx-c>4</mjx-c></mjx-mn></mjx-den></mjx-row></mjx-dtable></mjx-dbox></mjx-frac></mjx-mfrac><mjx-mo data-semantic- data-semantic-operator=\"infixop,+\" data-semantic-parent=\"9\" data-semantic-role=\"addition\" data-semantic-type=\"operator\" space=\"3\"><mjx-c>+</mjx-c></mjx-mo><mjx-mfrac data-semantic-annotation=\"clearspeak:simple\" data-semantic-children=\"6,7\" data-semantic- data-semantic-owns=\"6 7\" data-semantic-parent=\"9\" data-semantic-role=\"vulgar\" data-semantic-type=\"fraction\" space=\"3\"><mjx-frac style=\"vertical-align: 0.148em;\"><mjx-num><mjx-nstrut style=\"height: 0.042em; vertical-align: -0.042em;\"></mjx-nstrut><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"8\" data-semantic-role=\"integer\" data-semantic-type=\"number\" size=\"s\"><mjx-c>3</mjx-c></mjx-mn></mjx-num><mjx-dbox><mjx-dtable><mjx-line style=\"height: 0.068em; border-top: 0.085em solid; margin: 0.068em -0.1em;\"></mjx-line><mjx-row><mjx-den><mjx-dstrut style=\"height: 0.493em;\"></mjx-dstrut><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"8\" data-semantic-role=\"integer\" data-semantic-type=\"number\" size=\"s\"><mjx-c>4</mjx-c></mjx-mn></mjx-den></mjx-row></mjx-dtable></mjx-dbox></mjx-frac></mjx-mfrac></mjx-mrow></mjx-mrow></mjx-math></mjx-container> with interlayer separation <mjx-container ctxtmenu_counter=\"27\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"0\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-role=\"latinletter\" data-semantic-speech=\"d\" data-semantic-type=\"identifier\"><mjx-c>𝑑</mjx-c></mjx-mi></mjx-math></mjx-container> can be well described in terms of these composite particles. At small <mjx-container ctxtmenu_counter=\"28\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"0\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-role=\"latinletter\" data-semantic-speech=\"d\" data-semantic-type=\"identifier\"><mjx-c>𝑑</mjx-c></mjx-mi></mjx-math></mjx-container> the system can be understood as interlayer paired electrons and holes, whereas at large <mjx-container ctxtmenu_counter=\"29\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"0\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-role=\"latinletter\" data-semantic-speech=\"d\" data-semantic-type=\"identifier\"><mjx-c>𝑑</mjx-c></mjx-mi></mjx-math></mjx-container> the system is best understood in terms of composite fermions with four vortices attached to each electron. By computing the overlaps of trial wave functions with the ground state from exact diagonalization, we find that, as <mjx-container ctxtmenu_counter=\"30\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"0\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-role=\"latinletter\" data-semantic-speech=\"d\" data-semantic-type=\"identifier\"><mjx-c>𝑑</mjx-c></mjx-mi></mjx-math></mjx-container> increases, the number of vortices that attach to each electron increases. We also construct trial states for two types of excitation, the Goldstone mode and a meron excitation. These two trial states have good overlaps with the lowest excited states in the exact diagonalization spectrum for small and intermediate <mjx-container ctxtmenu_counter=\"31\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"0\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-role=\"latinletter\" data-semantic-speech=\"d\" data-semantic-type=\"identifier\"><mjx-c>𝑑</mjx-c></mjx-mi></mjx-math></mjx-container>, respectively.","PeriodicalId":20082,"journal":{"name":"Physical Review B","volume":"87 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Successive electron-vortex binding in quantum Hall bilayers at𝜈=14+34\",\"authors\":\"Glenn Wagner, Dung X. Nguyen\",\"doi\":\"10.1103/physrevb.110.195106\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Electrons in a quantum Hall fluid can bind with an integer number of vortices to form composite fermions and composite bosons. We show that the quantum Hall bilayer at filling <mjx-container ctxtmenu_counter=\\\"26\\\" ctxtmenu_oldtabindex=\\\"1\\\" jax=\\\"CHTML\\\" overflow=\\\"linebreak\\\" role=\\\"tree\\\" sre-explorer- style=\\\"font-size: 100.7%;\\\" tabindex=\\\"0\\\"><mjx-math data-semantic-structure=\\\"(10 0 1 (9 (4 2 3) 5 (8 6 7)))\\\"><mjx-mrow data-semantic-children=\\\"0,9\\\" data-semantic-content=\\\"1\\\" data-semantic- data-semantic-owns=\\\"0 1 9\\\" data-semantic-role=\\\"equality\\\" data-semantic-speech=\\\"nu equals one fourth plus three fourths\\\" data-semantic-type=\\\"relseq\\\"><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic- data-semantic-parent=\\\"10\\\" data-semantic-role=\\\"greekletter\\\" data-semantic-type=\\\"identifier\\\"><mjx-c>𝜈</mjx-c></mjx-mi><mjx-mo data-semantic- data-semantic-operator=\\\"relseq,=\\\" data-semantic-parent=\\\"10\\\" data-semantic-role=\\\"equality\\\" data-semantic-type=\\\"relation\\\" space=\\\"4\\\"><mjx-c>=</mjx-c></mjx-mo><mjx-mrow data-semantic-added=\\\"true\\\" data-semantic-children=\\\"4,8\\\" data-semantic-content=\\\"5\\\" data-semantic- data-semantic-owns=\\\"4 5 8\\\" data-semantic-parent=\\\"10\\\" data-semantic-role=\\\"addition\\\" data-semantic-type=\\\"infixop\\\" space=\\\"4\\\"><mjx-mfrac data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-children=\\\"2,3\\\" data-semantic- data-semantic-owns=\\\"2 3\\\" data-semantic-parent=\\\"9\\\" data-semantic-role=\\\"vulgar\\\" data-semantic-type=\\\"fraction\\\"><mjx-frac style=\\\"vertical-align: 0.148em;\\\"><mjx-num><mjx-nstrut style=\\\"height: 0.042em; vertical-align: -0.042em;\\\"></mjx-nstrut><mjx-mn data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-parent=\\\"4\\\" data-semantic-role=\\\"integer\\\" data-semantic-type=\\\"number\\\" size=\\\"s\\\"><mjx-c>1</mjx-c></mjx-mn></mjx-num><mjx-dbox><mjx-dtable><mjx-line style=\\\"height: 0.068em; border-top: 0.085em solid; margin: 0.068em -0.1em;\\\"></mjx-line><mjx-row><mjx-den><mjx-dstrut style=\\\"height: 0.493em;\\\"></mjx-dstrut><mjx-mn data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-parent=\\\"4\\\" data-semantic-role=\\\"integer\\\" data-semantic-type=\\\"number\\\" size=\\\"s\\\"><mjx-c>4</mjx-c></mjx-mn></mjx-den></mjx-row></mjx-dtable></mjx-dbox></mjx-frac></mjx-mfrac><mjx-mo data-semantic- data-semantic-operator=\\\"infixop,+\\\" data-semantic-parent=\\\"9\\\" data-semantic-role=\\\"addition\\\" data-semantic-type=\\\"operator\\\" space=\\\"3\\\"><mjx-c>+</mjx-c></mjx-mo><mjx-mfrac data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-children=\\\"6,7\\\" data-semantic- data-semantic-owns=\\\"6 7\\\" data-semantic-parent=\\\"9\\\" data-semantic-role=\\\"vulgar\\\" data-semantic-type=\\\"fraction\\\" space=\\\"3\\\"><mjx-frac style=\\\"vertical-align: 0.148em;\\\"><mjx-num><mjx-nstrut style=\\\"height: 0.042em; vertical-align: -0.042em;\\\"></mjx-nstrut><mjx-mn data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-parent=\\\"8\\\" data-semantic-role=\\\"integer\\\" data-semantic-type=\\\"number\\\" size=\\\"s\\\"><mjx-c>3</mjx-c></mjx-mn></mjx-num><mjx-dbox><mjx-dtable><mjx-line style=\\\"height: 0.068em; border-top: 0.085em solid; margin: 0.068em -0.1em;\\\"></mjx-line><mjx-row><mjx-den><mjx-dstrut style=\\\"height: 0.493em;\\\"></mjx-dstrut><mjx-mn data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-parent=\\\"8\\\" data-semantic-role=\\\"integer\\\" data-semantic-type=\\\"number\\\" size=\\\"s\\\"><mjx-c>4</mjx-c></mjx-mn></mjx-den></mjx-row></mjx-dtable></mjx-dbox></mjx-frac></mjx-mfrac></mjx-mrow></mjx-mrow></mjx-math></mjx-container> with interlayer separation <mjx-container ctxtmenu_counter=\\\"27\\\" ctxtmenu_oldtabindex=\\\"1\\\" jax=\\\"CHTML\\\" overflow=\\\"linebreak\\\" role=\\\"tree\\\" sre-explorer- style=\\\"font-size: 100.7%;\\\" tabindex=\\\"0\\\"><mjx-math data-semantic-structure=\\\"0\\\"><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic- data-semantic-role=\\\"latinletter\\\" data-semantic-speech=\\\"d\\\" data-semantic-type=\\\"identifier\\\"><mjx-c>𝑑</mjx-c></mjx-mi></mjx-math></mjx-container> can be well described in terms of these composite particles. At small <mjx-container ctxtmenu_counter=\\\"28\\\" ctxtmenu_oldtabindex=\\\"1\\\" jax=\\\"CHTML\\\" overflow=\\\"linebreak\\\" role=\\\"tree\\\" sre-explorer- style=\\\"font-size: 100.7%;\\\" tabindex=\\\"0\\\"><mjx-math data-semantic-structure=\\\"0\\\"><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic- data-semantic-role=\\\"latinletter\\\" data-semantic-speech=\\\"d\\\" data-semantic-type=\\\"identifier\\\"><mjx-c>𝑑</mjx-c></mjx-mi></mjx-math></mjx-container> the system can be understood as interlayer paired electrons and holes, whereas at large <mjx-container ctxtmenu_counter=\\\"29\\\" ctxtmenu_oldtabindex=\\\"1\\\" jax=\\\"CHTML\\\" overflow=\\\"linebreak\\\" role=\\\"tree\\\" sre-explorer- style=\\\"font-size: 100.7%;\\\" tabindex=\\\"0\\\"><mjx-math data-semantic-structure=\\\"0\\\"><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic- data-semantic-role=\\\"latinletter\\\" data-semantic-speech=\\\"d\\\" data-semantic-type=\\\"identifier\\\"><mjx-c>𝑑</mjx-c></mjx-mi></mjx-math></mjx-container> the system is best understood in terms of composite fermions with four vortices attached to each electron. By computing the overlaps of trial wave functions with the ground state from exact diagonalization, we find that, as <mjx-container ctxtmenu_counter=\\\"30\\\" ctxtmenu_oldtabindex=\\\"1\\\" jax=\\\"CHTML\\\" overflow=\\\"linebreak\\\" role=\\\"tree\\\" sre-explorer- style=\\\"font-size: 100.7%;\\\" tabindex=\\\"0\\\"><mjx-math data-semantic-structure=\\\"0\\\"><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic- data-semantic-role=\\\"latinletter\\\" data-semantic-speech=\\\"d\\\" data-semantic-type=\\\"identifier\\\"><mjx-c>𝑑</mjx-c></mjx-mi></mjx-math></mjx-container> increases, the number of vortices that attach to each electron increases. We also construct trial states for two types of excitation, the Goldstone mode and a meron excitation. These two trial states have good overlaps with the lowest excited states in the exact diagonalization spectrum for small and intermediate <mjx-container ctxtmenu_counter=\\\"31\\\" ctxtmenu_oldtabindex=\\\"1\\\" jax=\\\"CHTML\\\" overflow=\\\"linebreak\\\" role=\\\"tree\\\" sre-explorer- style=\\\"font-size: 100.7%;\\\" tabindex=\\\"0\\\"><mjx-math data-semantic-structure=\\\"0\\\"><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic- data-semantic-role=\\\"latinletter\\\" data-semantic-speech=\\\"d\\\" data-semantic-type=\\\"identifier\\\"><mjx-c>𝑑</mjx-c></mjx-mi></mjx-math></mjx-container>, respectively.\",\"PeriodicalId\":20082,\"journal\":{\"name\":\"Physical Review B\",\"volume\":\"87 1\",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review B\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevb.110.195106\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review B","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevb.110.195106","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
Successive electron-vortex binding in quantum Hall bilayers at𝜈=14+34
Electrons in a quantum Hall fluid can bind with an integer number of vortices to form composite fermions and composite bosons. We show that the quantum Hall bilayer at filling 𝜈=14+34 with interlayer separation 𝑑 can be well described in terms of these composite particles. At small 𝑑 the system can be understood as interlayer paired electrons and holes, whereas at large 𝑑 the system is best understood in terms of composite fermions with four vortices attached to each electron. By computing the overlaps of trial wave functions with the ground state from exact diagonalization, we find that, as 𝑑 increases, the number of vortices that attach to each electron increases. We also construct trial states for two types of excitation, the Goldstone mode and a meron excitation. These two trial states have good overlaps with the lowest excited states in the exact diagonalization spectrum for small and intermediate 𝑑, respectively.
期刊介绍:
Physical Review B (PRB) is the world’s largest dedicated physics journal, publishing approximately 100 new, high-quality papers each week. The most highly cited journal in condensed matter physics, PRB provides outstanding depth and breadth of coverage, combined with unrivaled context and background for ongoing research by scientists worldwide.
PRB covers the full range of condensed matter, materials physics, and related subfields, including:
-Structure and phase transitions
-Ferroelectrics and multiferroics
-Disordered systems and alloys
-Magnetism
-Superconductivity
-Electronic structure, photonics, and metamaterials
-Semiconductors and mesoscopic systems
-Surfaces, nanoscience, and two-dimensional materials
-Topological states of matter