{"title":"康斯峡湾淡水来源和颗粒物排放追踪:水同位素方法的启示","authors":"Ling Fang, Eun Jin Yang, Junho Yoo, Minkyoung Kim","doi":"10.3389/fmars.2024.1426793","DOIUrl":null,"url":null,"abstract":"Arctic fjords are inherently vulnerable to global warming, particularly because of the substantial freshwater influx resulting from the melting of glaciers. In this study, precipitation, river water, surface ice, and seawater samples from Kongsfjorden were collected to identify the main sources of freshwater. The dual water isotope (δ<jats:sup>18</jats:sup>O and δD) results and temperature–salinity profiles revealed that between 0% and 7% freshwater contributed to the fjord’s water. Furthermore, different freshwater sources for surface and deep water were identified by the dual water isotope analysis. Turbidity profiles confirmed the alter in particle discharge associated with surface runoff and subglacial discharge. Our study highlighted the sensitivity of water isotope analysis in elucidating the hydrological processes within the fjord system and demonstrated its potential for investigating the impact of meltwater on biological processes in the Arctic.","PeriodicalId":12479,"journal":{"name":"Frontiers in Marine Science","volume":"137 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tracing freshwater sources and particle discharge in Kongsfjorden: insights from a water isotope approach\",\"authors\":\"Ling Fang, Eun Jin Yang, Junho Yoo, Minkyoung Kim\",\"doi\":\"10.3389/fmars.2024.1426793\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Arctic fjords are inherently vulnerable to global warming, particularly because of the substantial freshwater influx resulting from the melting of glaciers. In this study, precipitation, river water, surface ice, and seawater samples from Kongsfjorden were collected to identify the main sources of freshwater. The dual water isotope (δ<jats:sup>18</jats:sup>O and δD) results and temperature–salinity profiles revealed that between 0% and 7% freshwater contributed to the fjord’s water. Furthermore, different freshwater sources for surface and deep water were identified by the dual water isotope analysis. Turbidity profiles confirmed the alter in particle discharge associated with surface runoff and subglacial discharge. Our study highlighted the sensitivity of water isotope analysis in elucidating the hydrological processes within the fjord system and demonstrated its potential for investigating the impact of meltwater on biological processes in the Arctic.\",\"PeriodicalId\":12479,\"journal\":{\"name\":\"Frontiers in Marine Science\",\"volume\":\"137 1\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Marine Science\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.3389/fmars.2024.1426793\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MARINE & FRESHWATER BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Marine Science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3389/fmars.2024.1426793","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MARINE & FRESHWATER BIOLOGY","Score":null,"Total":0}
Tracing freshwater sources and particle discharge in Kongsfjorden: insights from a water isotope approach
Arctic fjords are inherently vulnerable to global warming, particularly because of the substantial freshwater influx resulting from the melting of glaciers. In this study, precipitation, river water, surface ice, and seawater samples from Kongsfjorden were collected to identify the main sources of freshwater. The dual water isotope (δ18O and δD) results and temperature–salinity profiles revealed that between 0% and 7% freshwater contributed to the fjord’s water. Furthermore, different freshwater sources for surface and deep water were identified by the dual water isotope analysis. Turbidity profiles confirmed the alter in particle discharge associated with surface runoff and subglacial discharge. Our study highlighted the sensitivity of water isotope analysis in elucidating the hydrological processes within the fjord system and demonstrated its potential for investigating the impact of meltwater on biological processes in the Arctic.
期刊介绍:
Frontiers in Marine Science publishes rigorously peer-reviewed research that advances our understanding of all aspects of the environment, biology, ecosystem functioning and human interactions with the oceans. Field Chief Editor Carlos M. Duarte at King Abdullah University of Science and Technology Thuwal is supported by an outstanding Editorial Board of international researchers. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics, policy makers and the public worldwide.
With the human population predicted to reach 9 billion people by 2050, it is clear that traditional land resources will not suffice to meet the demand for food or energy, required to support high-quality livelihoods. As a result, the oceans are emerging as a source of untapped assets, with new innovative industries, such as aquaculture, marine biotechnology, marine energy and deep-sea mining growing rapidly under a new era characterized by rapid growth of a blue, ocean-based economy. The sustainability of the blue economy is closely dependent on our knowledge about how to mitigate the impacts of the multiple pressures on the ocean ecosystem associated with the increased scale and diversification of industry operations in the ocean and global human pressures on the environment. Therefore, Frontiers in Marine Science particularly welcomes the communication of research outcomes addressing ocean-based solutions for the emerging challenges, including improved forecasting and observational capacities, understanding biodiversity and ecosystem problems, locally and globally, effective management strategies to maintain ocean health, and an improved capacity to sustainably derive resources from the oceans.