二氢-1H-吡唑作为用于电光学的供体-受体色团中的供体嵌段:超光化性和电子激发的 DFT 研究

IF 2.3 3区 化学 Q3 CHEMISTRY, PHYSICAL
Roman Ishchenko, Vladimir Shelkovnikov
{"title":"二氢-1H-吡唑作为用于电光学的供体-受体色团中的供体嵌段:超光化性和电子激发的 DFT 研究","authors":"Roman Ishchenko,&nbsp;Vladimir Shelkovnikov","doi":"10.1002/qua.27511","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>A diverse set of promising donors for donor–acceptor chromophores based on dihydro-1<i>H</i>-pyrazole (pyrazoline) for use in electro-optics was investigated using DFT at M06-2X/aug-cc-pVDZ level of theory. These calculations showed that it is possible to achieve a molecular hyperpolarizability of up to 1700*10<sup>−30</sup> esu (up to three times higher compared to conventional diethylaniline donors) for a simple tricyanofuran-based acceptor by carefully tuning the donor structure. It was shown that the molecular hyperpolarizability is mainly affected by the substituents in the aryl rings in positions 3 and 1 of the pyrazoline cycle, while the substituents of the aryl ring in position 5 and the pyrazoline ring itself can be varied without significant effects on the hyperpolarizability. For one of the compounds, a detailed study of the lowest energy electronic excitation was performed using the TD-DFT, confirming the role of the pyrazoline ring as a secondary donor.</p>\n </div>","PeriodicalId":182,"journal":{"name":"International Journal of Quantum Chemistry","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dihydro-1H-Pyrazoles as Donor Blocks in Donor–Acceptor Chromophores for Electro-Optics: A DFT Study of Hyperpolaizability and Electronic Excitations\",\"authors\":\"Roman Ishchenko,&nbsp;Vladimir Shelkovnikov\",\"doi\":\"10.1002/qua.27511\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>A diverse set of promising donors for donor–acceptor chromophores based on dihydro-1<i>H</i>-pyrazole (pyrazoline) for use in electro-optics was investigated using DFT at M06-2X/aug-cc-pVDZ level of theory. These calculations showed that it is possible to achieve a molecular hyperpolarizability of up to 1700*10<sup>−30</sup> esu (up to three times higher compared to conventional diethylaniline donors) for a simple tricyanofuran-based acceptor by carefully tuning the donor structure. It was shown that the molecular hyperpolarizability is mainly affected by the substituents in the aryl rings in positions 3 and 1 of the pyrazoline cycle, while the substituents of the aryl ring in position 5 and the pyrazoline ring itself can be varied without significant effects on the hyperpolarizability. For one of the compounds, a detailed study of the lowest energy electronic excitation was performed using the TD-DFT, confirming the role of the pyrazoline ring as a secondary donor.</p>\\n </div>\",\"PeriodicalId\":182,\"journal\":{\"name\":\"International Journal of Quantum Chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Quantum Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/qua.27511\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Quantum Chemistry","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/qua.27511","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

在 M06-2X/aug-cc-pVDZ 理论水平上,使用 DFT 研究了基于二氢-1H-吡唑(吡唑啉)的多种有前途的供体-受体发色团,这些供体可用于电光学。计算结果表明,通过仔细调整供体结构,可以使简单的三氰基呋喃受体的分子超极化率达到 1700*10-30 esu(比传统的二乙基苯胺供体高出三倍)。研究表明,分子超极化率主要受吡唑啉循环中第 3 位和第 1 位芳基环上取代基的影响,而第 5 位芳基环和吡唑啉环本身的取代基可以改变,但不会对超极化率产生显著影响。利用 TD-DFT 对其中一种化合物的最低能量电子激发进行了详细研究,证实了吡唑啉环作为次级供体的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Dihydro-1H-Pyrazoles as Donor Blocks in Donor–Acceptor Chromophores for Electro-Optics: A DFT Study of Hyperpolaizability and Electronic Excitations

Dihydro-1H-Pyrazoles as Donor Blocks in Donor–Acceptor Chromophores for Electro-Optics: A DFT Study of Hyperpolaizability and Electronic Excitations

A diverse set of promising donors for donor–acceptor chromophores based on dihydro-1H-pyrazole (pyrazoline) for use in electro-optics was investigated using DFT at M06-2X/aug-cc-pVDZ level of theory. These calculations showed that it is possible to achieve a molecular hyperpolarizability of up to 1700*10−30 esu (up to three times higher compared to conventional diethylaniline donors) for a simple tricyanofuran-based acceptor by carefully tuning the donor structure. It was shown that the molecular hyperpolarizability is mainly affected by the substituents in the aryl rings in positions 3 and 1 of the pyrazoline cycle, while the substituents of the aryl ring in position 5 and the pyrazoline ring itself can be varied without significant effects on the hyperpolarizability. For one of the compounds, a detailed study of the lowest energy electronic excitation was performed using the TD-DFT, confirming the role of the pyrazoline ring as a secondary donor.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Quantum Chemistry
International Journal of Quantum Chemistry 化学-数学跨学科应用
CiteScore
4.70
自引率
4.50%
发文量
185
审稿时长
2 months
期刊介绍: Since its first formulation quantum chemistry has provided the conceptual and terminological framework necessary to understand atoms, molecules and the condensed matter. Over the past decades synergistic advances in the methodological developments, software and hardware have transformed quantum chemistry in a truly interdisciplinary science that has expanded beyond its traditional core of molecular sciences to fields as diverse as chemistry and catalysis, biophysics, nanotechnology and material science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信