增强 BaZrO3 改性(K,Na)NbO3 无铅压电陶瓷的双极耐疲劳性

IF 3.5 3区 材料科学 Q1 MATERIALS SCIENCE, CERAMICS
Jun Ma, Zhongshang Dou, Tao Lin, Chuanyang Tao, Binjie Chen, Meipeng Zhong, Wen Gong, Yuqing Zhou, Fang-Zhou Yao, Ke Wang
{"title":"增强 BaZrO3 改性(K,Na)NbO3 无铅压电陶瓷的双极耐疲劳性","authors":"Jun Ma,&nbsp;Zhongshang Dou,&nbsp;Tao Lin,&nbsp;Chuanyang Tao,&nbsp;Binjie Chen,&nbsp;Meipeng Zhong,&nbsp;Wen Gong,&nbsp;Yuqing Zhou,&nbsp;Fang-Zhou Yao,&nbsp;Ke Wang","doi":"10.1111/jace.20163","DOIUrl":null,"url":null,"abstract":"<p>0.92(K<sub>0.5</sub>Na<sub>0.5</sub>)NbO<sub>3</sub>-0.02(Bi<sub>0.8</sub>Li<sub>0.2</sub>)TiO<sub>3</sub>-0.06BaZrO<sub>3</sub> (BZ6) is a lead-free piezoelectric ceramic with excellent piezoelectric performance (such as the normalized strain <span></span><math>\n <semantics>\n <msubsup>\n <mi>d</mi>\n <mn>33</mn>\n <mo>∗</mo>\n </msubsup>\n <annotation>$d_{33}^*$</annotation>\n </semantics></math> reaches up to 476 pm/V). Considering potential device applications, it is essential to evaluate the ceramic's resistance to electrical fatigue. The bipolar fatigue behavior of (K,Na)NbO<sub>3</sub> (KNN)-based lead-free piezoelectric ceramics was investigated. Comparative analysis shows that BaZrO<sub>3</sub>-modified KNN ceramics have strong resistance to bipolar fatigue due to the coexistence of rhombohedral and tetragonal phase and the depinning of domain walls, whereas microstructural damage under mechanical stress makes pristine KNN ceramics susceptible to bipolar cycling. The hypothesis was systematically verified through the study of cycle-dependent small and large signal parameters and microscopic morphology. Our findings can guide the future design of KNN compositions with high resistance to bipolar fatigue.</p>","PeriodicalId":200,"journal":{"name":"Journal of the American Ceramic Society","volume":"108 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced bipolar fatigue resistance in BaZrO3-modified (K,Na)NbO3 lead-free piezoceramics\",\"authors\":\"Jun Ma,&nbsp;Zhongshang Dou,&nbsp;Tao Lin,&nbsp;Chuanyang Tao,&nbsp;Binjie Chen,&nbsp;Meipeng Zhong,&nbsp;Wen Gong,&nbsp;Yuqing Zhou,&nbsp;Fang-Zhou Yao,&nbsp;Ke Wang\",\"doi\":\"10.1111/jace.20163\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>0.92(K<sub>0.5</sub>Na<sub>0.5</sub>)NbO<sub>3</sub>-0.02(Bi<sub>0.8</sub>Li<sub>0.2</sub>)TiO<sub>3</sub>-0.06BaZrO<sub>3</sub> (BZ6) is a lead-free piezoelectric ceramic with excellent piezoelectric performance (such as the normalized strain <span></span><math>\\n <semantics>\\n <msubsup>\\n <mi>d</mi>\\n <mn>33</mn>\\n <mo>∗</mo>\\n </msubsup>\\n <annotation>$d_{33}^*$</annotation>\\n </semantics></math> reaches up to 476 pm/V). Considering potential device applications, it is essential to evaluate the ceramic's resistance to electrical fatigue. The bipolar fatigue behavior of (K,Na)NbO<sub>3</sub> (KNN)-based lead-free piezoelectric ceramics was investigated. Comparative analysis shows that BaZrO<sub>3</sub>-modified KNN ceramics have strong resistance to bipolar fatigue due to the coexistence of rhombohedral and tetragonal phase and the depinning of domain walls, whereas microstructural damage under mechanical stress makes pristine KNN ceramics susceptible to bipolar cycling. The hypothesis was systematically verified through the study of cycle-dependent small and large signal parameters and microscopic morphology. Our findings can guide the future design of KNN compositions with high resistance to bipolar fatigue.</p>\",\"PeriodicalId\":200,\"journal\":{\"name\":\"Journal of the American Ceramic Society\",\"volume\":\"108 1\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the American Ceramic Society\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/jace.20163\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, CERAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Ceramic Society","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jace.20163","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0

摘要

0.92(K0.5Na0.5)NbO3-0.02(Bi0.8Li0.2)TiO3-0.06BaZrO3 (BZ6) 是一种无铅压电陶瓷,具有优异的压电性能(例如归一化应变 d 33 ∗ $d_{33}^*$ 可高达 476 pm/V)。考虑到潜在的设备应用,评估陶瓷的抗电疲劳性能至关重要。我们研究了基于 (K,Na)NbO3 (KNN) 的无铅压电陶瓷的双极疲劳行为。对比分析表明,BaZrO3 改性的 KNN 陶瓷具有很强的抗双极疲劳能力,这是由于斜方体相和四方体相共存以及畴壁的减薄所致,而机械应力作用下的微结构损伤则使原始 KNN 陶瓷容易受到双极循环的影响。通过研究与循环相关的大小信号参数和微观形态,我们系统地验证了这一假设。我们的研究结果可为今后设计具有高抗双极疲劳能力的 KNN 成分提供指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhanced bipolar fatigue resistance in BaZrO3-modified (K,Na)NbO3 lead-free piezoceramics

0.92(K0.5Na0.5)NbO3-0.02(Bi0.8Li0.2)TiO3-0.06BaZrO3 (BZ6) is a lead-free piezoelectric ceramic with excellent piezoelectric performance (such as the normalized strain  d 33 $d_{33}^*$ reaches up to 476 pm/V). Considering potential device applications, it is essential to evaluate the ceramic's resistance to electrical fatigue. The bipolar fatigue behavior of (K,Na)NbO3 (KNN)-based lead-free piezoelectric ceramics was investigated. Comparative analysis shows that BaZrO3-modified KNN ceramics have strong resistance to bipolar fatigue due to the coexistence of rhombohedral and tetragonal phase and the depinning of domain walls, whereas microstructural damage under mechanical stress makes pristine KNN ceramics susceptible to bipolar cycling. The hypothesis was systematically verified through the study of cycle-dependent small and large signal parameters and microscopic morphology. Our findings can guide the future design of KNN compositions with high resistance to bipolar fatigue.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of the American Ceramic Society
Journal of the American Ceramic Society 工程技术-材料科学:硅酸盐
CiteScore
7.50
自引率
7.70%
发文量
590
审稿时长
2.1 months
期刊介绍: The Journal of the American Ceramic Society contains records of original research that provide insight into or describe the science of ceramic and glass materials and composites based on ceramics and glasses. These papers include reports on discovery, characterization, and analysis of new inorganic, non-metallic materials; synthesis methods; phase relationships; processing approaches; microstructure-property relationships; and functionalities. Of great interest are works that support understanding founded on fundamental principles using experimental, theoretical, or computational methods or combinations of those approaches. All the published papers must be of enduring value and relevant to the science of ceramics and glasses or composites based on those materials. Papers on fundamental ceramic and glass science are welcome including those in the following areas: Enabling materials for grand challenges[...] Materials design, selection, synthesis and processing methods[...] Characterization of compositions, structures, defects, and properties along with new methods [...] Mechanisms, Theory, Modeling, and Simulation[...] JACerS accepts submissions of full-length Articles reporting original research, in-depth Feature Articles, Reviews of the state-of-the-art with compelling analysis, and Rapid Communications which are short papers with sufficient novelty or impact to justify swift publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信