量子对状态转移的推广

IF 2.2 3区 物理与天体物理 Q1 PHYSICS, MATHEMATICAL
Sooyeong Kim, Hermie Monterde, Bahman Ahmadi, Ada Chan, Stephen Kirkland, Sarah Plosker
{"title":"量子对状态转移的推广","authors":"Sooyeong Kim,&nbsp;Hermie Monterde,&nbsp;Bahman Ahmadi,&nbsp;Ada Chan,&nbsp;Stephen Kirkland,&nbsp;Sarah Plosker","doi":"10.1007/s11128-024-04574-9","DOIUrl":null,"url":null,"abstract":"<div><p>An <i>s</i><i>-pair state</i> in a graph is a quantum state of the form <span>\\(\\textbf{e}_u+s\\textbf{e}_v\\)</span>, where <i>u</i> and <i>v</i> are vertices in the graph and <i>s</i> is a nonzero complex number. If <span>\\(s=-1\\)</span> (resp., <span>\\(s=1\\)</span>), then such a state is called a <i>pair state</i> (resp. <i>plus state</i>). In this paper, we develop the theory of perfect <i>s</i>-pair state transfer in continuous quantum walks, where the Hamiltonian is taken to be the adjacency, Laplacian or signless Laplacian matrix of the graph. We characterize perfect <i>s</i>-pair state transfer in complete graphs, cycles and antipodal distance-regular graphs admitting vertex perfect state transfer. We construct infinite families of graphs with perfect <i>s</i>-pair state transfer using quotient graphs and graphs that admit fractional revival. We provide necessary and sufficient conditions such that perfect state transfer between vertices in the line graph relative to the adjacency matrix is equivalent to perfect state transfer between the plus states formed by corresponding edges in the graph relative to the signless Laplacian matrix. Finally, we characterize perfect state transfer between vertices in the line graphs of Cartesian products relative to the adjacency matrix.</p></div>","PeriodicalId":746,"journal":{"name":"Quantum Information Processing","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A generalization of quantum pair state transfer\",\"authors\":\"Sooyeong Kim,&nbsp;Hermie Monterde,&nbsp;Bahman Ahmadi,&nbsp;Ada Chan,&nbsp;Stephen Kirkland,&nbsp;Sarah Plosker\",\"doi\":\"10.1007/s11128-024-04574-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>An <i>s</i><i>-pair state</i> in a graph is a quantum state of the form <span>\\\\(\\\\textbf{e}_u+s\\\\textbf{e}_v\\\\)</span>, where <i>u</i> and <i>v</i> are vertices in the graph and <i>s</i> is a nonzero complex number. If <span>\\\\(s=-1\\\\)</span> (resp., <span>\\\\(s=1\\\\)</span>), then such a state is called a <i>pair state</i> (resp. <i>plus state</i>). In this paper, we develop the theory of perfect <i>s</i>-pair state transfer in continuous quantum walks, where the Hamiltonian is taken to be the adjacency, Laplacian or signless Laplacian matrix of the graph. We characterize perfect <i>s</i>-pair state transfer in complete graphs, cycles and antipodal distance-regular graphs admitting vertex perfect state transfer. We construct infinite families of graphs with perfect <i>s</i>-pair state transfer using quotient graphs and graphs that admit fractional revival. We provide necessary and sufficient conditions such that perfect state transfer between vertices in the line graph relative to the adjacency matrix is equivalent to perfect state transfer between the plus states formed by corresponding edges in the graph relative to the signless Laplacian matrix. Finally, we characterize perfect state transfer between vertices in the line graphs of Cartesian products relative to the adjacency matrix.</p></div>\",\"PeriodicalId\":746,\"journal\":{\"name\":\"Quantum Information Processing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantum Information Processing\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11128-024-04574-9\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Information Processing","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11128-024-04574-9","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

图中的s对态是一种形式为\(\textbf{e}_u+s\textbf{e}_v\)的量子态,其中u和v是图中的顶点,s是一个非零复数。如果 \(s=-1\) (或者, \(s=1\) ),那么这样的状态被称为对状态(或者,加状态)。在本文中,我们发展了连续量子行走中完美 s 对态转移的理论,其中哈密顿是图的邻接矩阵、拉普拉斯矩阵或无符号拉普拉斯矩阵。我们描述了完整图、循环图和允许顶点完美状态转移的反顶距不规则图中的完美 s 对状态转移。我们利用商图和允许分数复活的图,构建了具有完美 s 对状态转移的无限图族。我们提供了必要条件和充分条件,使得线图中顶点之间相对于邻接矩阵的完美状态转移等同于图中相应边形成的加状态之间相对于无符号拉普拉奇矩阵的完美状态转移。最后,我们描述了笛卡尔积的线图中顶点之间相对于邻接矩阵的完美状态转移。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A generalization of quantum pair state transfer

A generalization of quantum pair state transfer

An s-pair state in a graph is a quantum state of the form \(\textbf{e}_u+s\textbf{e}_v\), where u and v are vertices in the graph and s is a nonzero complex number. If \(s=-1\) (resp., \(s=1\)), then such a state is called a pair state (resp. plus state). In this paper, we develop the theory of perfect s-pair state transfer in continuous quantum walks, where the Hamiltonian is taken to be the adjacency, Laplacian or signless Laplacian matrix of the graph. We characterize perfect s-pair state transfer in complete graphs, cycles and antipodal distance-regular graphs admitting vertex perfect state transfer. We construct infinite families of graphs with perfect s-pair state transfer using quotient graphs and graphs that admit fractional revival. We provide necessary and sufficient conditions such that perfect state transfer between vertices in the line graph relative to the adjacency matrix is equivalent to perfect state transfer between the plus states formed by corresponding edges in the graph relative to the signless Laplacian matrix. Finally, we characterize perfect state transfer between vertices in the line graphs of Cartesian products relative to the adjacency matrix.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Quantum Information Processing
Quantum Information Processing 物理-物理:数学物理
CiteScore
4.10
自引率
20.00%
发文量
337
审稿时长
4.5 months
期刊介绍: Quantum Information Processing is a high-impact, international journal publishing cutting-edge experimental and theoretical research in all areas of Quantum Information Science. Topics of interest include quantum cryptography and communications, entanglement and discord, quantum algorithms, quantum error correction and fault tolerance, quantum computer science, quantum imaging and sensing, and experimental platforms for quantum information. Quantum Information Processing supports and inspires research by providing a comprehensive peer review process, and broadcasting high quality results in a range of formats. These include original papers, letters, broadly focused perspectives, comprehensive review articles, book reviews, and special topical issues. The journal is particularly interested in papers detailing and demonstrating quantum information protocols for cryptography, communications, computation, and sensing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信