{"title":"对数正态纹理复合高斯海杂波中分布式目标的贝叶斯检测","authors":"Hongzhi Guo, Zhihang Wang, Haoqi Wu, Zishu He, Ziyang Cheng","doi":"10.1016/j.sigpro.2024.109751","DOIUrl":null,"url":null,"abstract":"<div><div>This article investigates the Bayesian detection problem for the distributed targets in the compound Gaussian (CG) sea clutter. The CG sea clutter is formulated as a product of lognormal texture and speckle component with an inverse Wishart distribution covariance matrix (CM). A generalized likelihood ratio test (GLRT) based Bayesian detector, which can operate without training data, is proposed by integrating the speckle CM and estimating the texture using the maximum <em>a posteriori</em> (MAP) criterion. Additionally, three other Bayesian detectors are designed for distributed targets by exploiting the two-step GLRT, the complex-valued Rao, and Wald tests. We first derive the test statistics assuming known texture and speckle CM. Then, by incorporating the MAP-estimated texture components and speckle CM into the test statistics, we present three Bayesian detectors for distributed targets. Finally, simulation experiments validate the detection performance of the proposed Bayesian detectors using both simulated and real sea clutter data.</div></div>","PeriodicalId":49523,"journal":{"name":"Signal Processing","volume":"227 ","pages":"Article 109751"},"PeriodicalIF":3.4000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bayesian detection for distributed targets in compound Gaussian sea clutter with lognormal texture\",\"authors\":\"Hongzhi Guo, Zhihang Wang, Haoqi Wu, Zishu He, Ziyang Cheng\",\"doi\":\"10.1016/j.sigpro.2024.109751\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This article investigates the Bayesian detection problem for the distributed targets in the compound Gaussian (CG) sea clutter. The CG sea clutter is formulated as a product of lognormal texture and speckle component with an inverse Wishart distribution covariance matrix (CM). A generalized likelihood ratio test (GLRT) based Bayesian detector, which can operate without training data, is proposed by integrating the speckle CM and estimating the texture using the maximum <em>a posteriori</em> (MAP) criterion. Additionally, three other Bayesian detectors are designed for distributed targets by exploiting the two-step GLRT, the complex-valued Rao, and Wald tests. We first derive the test statistics assuming known texture and speckle CM. Then, by incorporating the MAP-estimated texture components and speckle CM into the test statistics, we present three Bayesian detectors for distributed targets. Finally, simulation experiments validate the detection performance of the proposed Bayesian detectors using both simulated and real sea clutter data.</div></div>\",\"PeriodicalId\":49523,\"journal\":{\"name\":\"Signal Processing\",\"volume\":\"227 \",\"pages\":\"Article 109751\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Signal Processing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0165168424003712\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165168424003712","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
摘要
本文研究了复合高斯(CG)海杂波中分布式目标的贝叶斯检测问题。复合高斯海杂波是对数正态纹理和斑点分量与逆 Wishart 分布协方差矩阵(CM)的乘积。研究人员提出了一种基于广义似然比检验(GLRT)的贝叶斯检测器,该检测器可以在没有训练数据的情况下工作,其方法是整合斑点 CM 并使用最大后验(MAP)准则估计纹理。此外,通过利用两步 GLRT、复值 Rao 和 Wald 检验,还为分布式目标设计了另外三种贝叶斯检测器。我们首先假设已知纹理和斑点 CM,得出检测统计量。然后,通过将 MAP 估算的纹理成分和斑点 CM 纳入测试统计,我们提出了三种针对分布式目标的贝叶斯检测器。最后,模拟实验利用模拟和真实海杂波数据验证了所提出的贝叶斯检测器的检测性能。
Bayesian detection for distributed targets in compound Gaussian sea clutter with lognormal texture
This article investigates the Bayesian detection problem for the distributed targets in the compound Gaussian (CG) sea clutter. The CG sea clutter is formulated as a product of lognormal texture and speckle component with an inverse Wishart distribution covariance matrix (CM). A generalized likelihood ratio test (GLRT) based Bayesian detector, which can operate without training data, is proposed by integrating the speckle CM and estimating the texture using the maximum a posteriori (MAP) criterion. Additionally, three other Bayesian detectors are designed for distributed targets by exploiting the two-step GLRT, the complex-valued Rao, and Wald tests. We first derive the test statistics assuming known texture and speckle CM. Then, by incorporating the MAP-estimated texture components and speckle CM into the test statistics, we present three Bayesian detectors for distributed targets. Finally, simulation experiments validate the detection performance of the proposed Bayesian detectors using both simulated and real sea clutter data.
期刊介绍:
Signal Processing incorporates all aspects of the theory and practice of signal processing. It features original research work, tutorial and review articles, and accounts of practical developments. It is intended for a rapid dissemination of knowledge and experience to engineers and scientists working in the research, development or practical application of signal processing.
Subject areas covered by the journal include: Signal Theory; Stochastic Processes; Detection and Estimation; Spectral Analysis; Filtering; Signal Processing Systems; Software Developments; Image Processing; Pattern Recognition; Optical Signal Processing; Digital Signal Processing; Multi-dimensional Signal Processing; Communication Signal Processing; Biomedical Signal Processing; Geophysical and Astrophysical Signal Processing; Earth Resources Signal Processing; Acoustic and Vibration Signal Processing; Data Processing; Remote Sensing; Signal Processing Technology; Radar Signal Processing; Sonar Signal Processing; Industrial Applications; New Applications.